Answer:
The reason they don't react is because Elements with full octets are stable, the Elements with no unpaired electrons do not react at all in the decay.
Answer:
6 moles of Cl2
Explanation:
First, the equation has to be balanced, which makes it 4 FeCl3 + 3 O2 --> 2 Fe2O3 + 6 Cl2
Using this information, we can see that one mole of O2 will not be present in the reaction. Since four moles of FeCl3 are needed to react in the equation, which would produce six moles of Cl2, and only four moles of FeCl3 are present, six moles of Cl2 would be produced.
Answer:
Explanation:
In this chemistry lab, students investigate how to build and launch a simple rocket that uses hydrogen and oxygen gases that will be mixed to propel the rocket (large bulb plastic pipette). Students will understand the principles of combustion reactions, kinetics, stoichiometry of reactions, activation energy, explosive mixtures, rocketry, and different types of chemical reactions. Students will explore and determine the proportions of hydrogen and oxygen mixture that will achieve the best launch results. Students will compare the balanced chemical reaction of hydrogen and oxygen with their lab results; students should discover that the optimal distance occurs when the mixture of hydrogen and oxygen is two to one hydrogen, oxygen mixture ratio and this can be determined theoretically from the balanced chemical reaction equation. Students will perform the lab, collect data, and discuss, compare, and contrast their lab findings with the balanced chemical reaction equation. Students will present their structured inquiry investigations using a power-point presentation. Other groups along with the teacher will assess each group by using a provided rubric. Group assessments will be the deciding assessment for the final lab score. A follow up activity could investigate how NASA scientists launch real rockets into space and propose a procedure to investigate and collect data on a launching a heavier object at the school football field.