Answer:
v = 54m/s
Explanation:

a = 7m/s²
u = 12m/s
t = 6s
7 = (v-12)/6
v - 12 = 42
v = 54m/s
(Correct me if i am wrong)
(a) The maximum potential difference across the resistor is 339.41 V.
(b) The maximum current through the resistor is 0.23 A.
(c) The rms current through the resistor is 0.16 A.
(d) The average power dissipated by the resistor is 38.4 W.
<h3>Maximum potential difference</h3>
Vrms = 0.7071V₀
where;
V₀ = Vrms/0.7071
V₀ = 240/0.7071
V₀ = 339.41 V
<h3> rms current through the resistor </h3>
I(rms) = V(rms)/R
I(rms) = (240)/(1,540)
I(rms) = 0.16 A
<h3>maximum current through the resistor </h3>
I₀ = I(rms)/0.7071
I₀ = (0.16)/0.7071
I₀ = 0.23 A
<h3> Average power dissipated by the resistor</h3>
P = I(rms) x V(rms)
P = 0.16 x 240
P = 38.4 W
Learn more about maximum current here: brainly.com/question/14562756
#SPJ1
Answer:
Explanation:
A proton and electron are moving in the positive x direction, this shows that their velocity will be in the positive x direction
V = v•i
Magnetic field Is the positive z direction
B = B•k
A. For proton.
Proton has a positive charge of q
Direction of force on proton
Force is given as
F = q(v×B)
F = q( v•i × B•k)
F = qvB (i×k)
From vectors i×k = -j
F = -qvB •j
Then, for the positive charge, the force will act in the negative direction of the y-axis
B. For electron
Electron has a negative of -q
Direction of force on proton
Force is given as
F = q(v×B)
F = -q( v•i × B•k)
F = -qvB (i×k)
From vectors i×k = -j
F = --qvB •j
F = qvB •j
Then, for the negative charge, the force will act in the positive direction of the y-axis
1,000 grams = 1 kilogram
20 grams = 0.02 kilogram
Kinetic energy = (1/2) (mass) x (speed)²
(1/2) (0.02) x (15)² =
(0.01) x (225) = 2.25 joules