<span>Assuming that the momenta of the two pieces are equal: when they have equal velocities, then
the masses of the two pieces are also equal.
Since there is no force from outside of the system, the center of mass moves on with the same velocity as before the equation. So the two pieces must fly at the side side of the mass center, i.e., they must always be at 90° to the side of the mass center. Otherwise it would not be the mass center, respectively the pieces would not have equal velocities.
This is only possible, when the angle of their velocity with the initial direction is 60°.
Because, cos (60°) = 1/2 = v/(2v).</span>
Answer:
a. True
Explanation:
Solar radiation at frequencies of visible light passes through the atmosphere, heating the planet's surface, subsequently this energy is emitted in infrared thermal radiation. This radiation is absorbed by the gases produced by the combustion of fossil fuels. Therefore, the greater the amount of these gases in the atmosphere, the more heat will be trapped in the earth, raising its global temperature.
1) push down on the end of the lever, and 2) 3/4 of the way from the fulcrum
Answer:
A. Vx = 3.63 m/s
B. Vy = -45.73 m/s
C. |V| = 45.87 m/s
D. θ = -85.46°
Explanation:
Given that position, r, is given as:
r = 3.63tˆi − 5.73t^2ˆj + 8.16ˆk
Velocity is the derivative of position, r:
V = dr/dt = 3.63 - 11.46t^j
A. x component of velocity, Vx = 3.63 m/s
B. y component of velocity, Vy = -11.46t
t = 3.99 secs,
Vy = - 11.46 * 3.99 = -45.73 m/s
C. Magnitude of velocity, |V| = √[(-45.73)² + 3.63²]
|V| = √(2091.2329 + 13.1769)
|V| = √(2104.4098)
|V| = 45.87 m/s
D. Angle of the velocity relative to the x axis, θ is given as:
tanθ = Vy/Vx
tanθ = -45.73/3.63
tanθ = -12.6
θ = -85.46°
Answer:
W = - 118.24 J (negative sign shows that work is done on piston)
Explanation:
First, we find the change in internal energy of the diatomic gas by using the following formula:
where,
ΔU = Change in internal energy of gas = ?
n = no. of moles of gas = 0.0884 mole
Cv = Molar Specific Heat at constant volume = 5R/2 (for diatomic gases)
Cv = 5(8.314 J/mol.K)/2 = 20.785 J/mol.K
ΔT = Rise in Temperature = 18.8 K
Therefore,
Now, we can apply First Law of Thermodynamics as follows:
where,
ΔQ = Heat flow = - 83.7 J (negative sign due to outflow)
W = Work done = ?
Therefore,
<u>W = - 118.24 J (negative sign shows that work is done on piston)</u>