The first rule of vectors is that the horizontal and vertical components are separate. Disregarding air resistance, the only thing we have to worry about is gravity.
The appropriate suvat to use for the vertical component is v = u +at
I will take a to be -9.81, you may have to change it to be 10 if your qualification likes g to be 10.
v = 30 + (-9.81x2)
v = 30 - 19.62
=10.38m/s
Therefore we know that after 2.0 s the vertical component will be 10.38ms^-1, ie 10m/s as the answers given are all to 2sf.
The horizontal component is completely separate to the vertical component and since there is no air resistance, it will remain constant throughout the projectiles trajectory. Therefore it will remain at 40ms^-1.
Combining this together we get:
(1) vx=40m/s and vy=10m/s
Answer:
a)
two like charges always repel each other while two unlike charges attract each other. Since the spring stretches by 0.039 m, the charges have the same sign. both charges are positive(+) or Negative (-)
b)
both q1 and q1 are 8.35 × 10⁻⁶ C or -8.35 × 10⁻⁶ C
Explanation:
Given that;
L = 0.26 m
k = 180 N/m
x = 0.039 m
a)
we know that two like charges always repel each other while two unlike charges attract each other. Since the spring stretches by 0.039 m, the charges have the same sign.
b)
Spring force F = kx
F = 180 × 0.039
F = 7.02 N
Now, Electrostatic force F = Keq²/r²
where r = L + x = ( 0.26 + 0.039 )
we know that proportionality constant in electrostatics equations Ke = 9×10⁹ kg⋅m3⋅s−2⋅C−2
so from the equation; F = Keq²/r²
Fr² = Keq²
q = √ ( Fr² / Ke )
we substitute
q = √ ( 7.02 N × ( 0.26 + 0.039 )² / 9×10⁹ )
q = √ ( 7.02 N × ( 0.26 + 0.039 )² / 9×10⁹ )
q = √ (0.627595 / 9×10⁹)
q = √(6.97 × 10⁻¹¹)
q = 8.35 × 10⁻⁶ C
Therefore both q1 and q1 are 8.35 × 10⁻⁶ C or -8.35 × 10⁻⁶ C
So when making structures you have to have squares rectangles right and a triangle and another triangle equals a square so thats all there is to it
Answer:
The line charge density is 
Explanation:
Given that,
Diameter = 2.54 cm
Distance = 19.6 m
Potential difference = 115 kV
We need to calculate the line charge density
Using formula of potential difference



Where, r = radius
V = potential difference
Put the value into the formula


Hence, The line charge density is 