Answer:
Explanation:
Given that:
the temperature
= 250 °C= ( 250+ 273.15 ) K = 523.15 K
Pressure = 1800 kPa
a)
The truncated viral equation is expressed as:

where; B = -
C = -5800 
R = 8.314 × 10³ cm³ kPa. K⁻¹.mol⁻¹
Plugging all our values; we have


Multiplying through with V² ; we have


V = 2250.06 cm³ mol⁻¹
Z = 
Z = 
Z = 0.931
b) The truncated virial equation [Eq. (3.36)], with a value of B from the generalized Pitzer correlation [Eqs. (3.58)–(3.62)].
The generalized Pitzer correlation is :












The compressibility is calculated as:


Z = 0.9386


V = 2268.01 cm³ mol⁻¹
c) From the steam tables (App. E).
At 
V = 0.1249 m³/ kg
M (molecular weight) = 18.015 gm/mol
V = 0.1249 × 10³ × 18.015
V = 2250.07 cm³/mol⁻¹
R = 729.77 J/kg.K
Z = 
Z = 
Z = 0.588
Answer:
An increase in the carbon dioxide concentration increases the rate at which carbon is incorporated into carbohydrate in the light-independent reaction, and so the rate of photosynthesis generally increases until limited by another factor.
Explanation:
30.07 g/mol (that’s grams per mole)
It depends on what type of graph you have. The easiest would be using a H-T diagram. Enthalpy of vaporization is the physical change from liquid to vapor. It occurs at a constant pressure and a constant temperature. As shown in the picture, 1 point is drawn on the subcooled liquid, and another point of the saturated vapor isothermal line. Now, the difference between those two points is the value for the enthalpy of vaporization of water.
Answer:heat-,7
Explanation:According to table P, heat- is an organic prefix used to represent 7 carbon atoms