Answer:
BaBr2 (aq) + H2SO4 (aq) → BaSO4 (s) + 2 HBr (aq)
Explanation:
This is a precipitation reaction: BaSO4 is the formed precipitate.
Answer: 4Kcal
Explanation:
H= mcø
M=200g
C= 1 cal/g/°c
Ø= 40-20=20°c
H= 200*1*20= 4000calories= 4Kcal
<h3>
Answer:</h3>
0.127 mol Au
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Moles
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] 25.0 g Au
[Solve] moles Au
<u>Step 2: Identify Conversions</u>
[PT] Molar Mass of Au - 196.97 g/mol
<u>Step 3: Convert</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
0.126923 mol Au ≈ 0.127 mol Au
Both figures are mixtures,
Figure II is a heterogenous mixture
Figure I is a homogenous mixture
Answer:
d- 334 kJ/g.
Explanation:
You can detect it from the units of the different choices.
a- has the unit J/g.°C that is the unit of the specific heat capacity (c).
b- has the unit Kelvin that is the unit of temperature.
c- has the unit g/mol which is the unit of the molar mass.
d- has the unit kJ/g which is the unit of the enthalpy divided by the no. of rams that is the specific entha;py of fusion.
<em>So, the right choice is: d- 334 kJ/g.</em>