Answer:
M = ρ V = 9 gm/cm^ 3 * cm^3 = 27 gm
a = (V2 - V1) / t = (6 - 2) m/s / 12 s = 1/3 m/s^2 the acceleration
F = M a = 27 gm * 1/3 m/s^2 = 9 dynes net force applied
Speed = (distance traveled) / (time to travel the distance).
Strange as it may seem, 'velocity' is completely different.
Velocity doesn't involve the total distance traveled at all.
Instead, 'velocity' is based on 'displacement' ... the distance
between the start-point and end-point, regardless of the route
taken to get there. So the displacement in driving once around
any closed path is zero, because you end up where you started.
Velocity =
(displacement during some time)
divided by
(time for the displacement)
AND the direction from the start-point to the end-point.
For the guy who drove 15 km to his destination in 10 min, and then
back to his starting point in 5 min, (assuming he returned by way of
the same 15-km route):
Speed = (15km + 15km) / (10min + 5min) = (30/15) (km/min)
= 2 km/min.
Velocity = (end location - start position) / (15 min) = Zero .
Missing question:
"Determine (a) the astronaut’s orbital speed v and (b) the period of the orbit"
Solution
part a) The center of the orbit of the third astronaut is located at the center of the moon. This means that the radius of the orbit is the sum of the Moon's radius r0 and the altitude (

) of the orbit:

This is a circular motion, where the centripetal acceleration is equal to the gravitational acceleration g at this altitude. The problem says that at this altitude,

. So we can write

where

is the centripetal acceleration and v is the speed of the astronaut. Re-arranging it we can find v:

part b) The orbit has a circumference of

, and the astronaut is covering it at a speed equal to v. Therefore, the period of the orbit is

So, the period of the orbit is 2.45 hours.
Answer:
lol imposter winsllllllllllllll
Answer:
It should be 1 meter, but I'm no scientist.
Explanation: IDK