Answer:
The “terminal speed” of the ball bearing is 5.609 m/s
Explanation:
Radius of the steel ball R = 2.40 mm
Viscosity of honey η = 6.0 Pa/s



While calculating the terminal speed in liquids where density is high the stokes law is used for viscous force and buoyant force is taken into consideration for effective weight of the object. So the expression for terminal speed (Vt)

Substitute the given values to find "terminal speed"




The “terminal speed” of the ball bearing is 5.609 m/s
Psychology on Egenuity Oct 5th 2018 says answer is C
At STP, 1 mole of an ideal gas occupies a volume of about 22.4 L. So if <em>n</em> is the number of moles of this gas, then
<em>n</em> / (19.2 L) = (1 mole) / (22.4 L) ==> <em>n</em> = (19.2 L•mole) / (22.4 L) ≈ 0.857 mol
If the sample has a mass of 12.0 g, then its molecular weight is
(12.0 g) / <em>n</em> ≈ 14.0 g/mol
Answer:
2352645198509.9604 m/s²
Explanation:
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
M = Mass of black hole = 
= 10000+100 m
= Distance between the nose and the center of the black hole = 10000 m
The difference in the gravitational field in this system is given by

The acceleration is 2352645198509.9604 m/s²
A) be too hot to support life