Answer:
A.model the reflection of a light wave
The Wave Model of Light Toolkit provides teachers with standards-based resources for designing lesson plans and units that pertain to such topics as the light's wavelike behaviors, wave-particle duality, light-wave interference, and light polarization
B. .model the absorption of a light wave
The simplest model is the Drude/Lorentz model, where the light wave makes charged particle oscillate while the particle is also being damped by a force of friction (damping force)
A mirror provides the foremost common model for reflective light wave reflection and generally consists of a glass sheet with a gold coating wherever the many reflections happen. Reflection is increased in metals by suppression of wave propagation on the far side their skin depths
C.model the transmimssion of a light wave
The Wave Model describes how light propagates in the same way as we model ocean waves moving through the water. By thinking of light as an oscillating wave, we can account for properties of light such as its wavelength and frequency. By including wavelength information, the Wave Model can be used to explain colors.
Explanation:
Answer:
Landed before it explodes
Explanation:
vf = vi + at,
0 = 145 - (9.8)t,
t = 14.79 s (Time to reach highest point)
14.79 x 2 = 29.59 s (Time to land on the ground)
It will have landed before it explodes because both the time to reach the highest point and the time to land on the ground are less than 32 seconds.
Answer:
b.it depends on the distance it falls
Answer:
a. 120 W
b. 28.8 N
Explanation:
To a good approximate, the only external force that does work on a cyclist moving on level ground is the force of air resistance. Suppose a cyclist is traveling at 15 km/h on level ground. Assume he is using 480 W of metabolic power.
a. Estimate the amount of power he uses for forward motion.
b. How much force must he exert to overcome the force of air resistance?
(a)
He is 25% efficient, therefore the cyclist will be expending 25% of his power to drive the bicycle forward
Power = efficiency X metabolic power
= 0.25 X 480
= 120 W
(b)
power if force times the velocity
P = Fv
convert 15 km/h to m/s
v = 15 kmph = 4.166 m/s
F = P/v
= 120/4.166
= 28.8 N
definition of terms
power is the rate at which work is done
force is that which changes a body's state of rest or uniform motion in a straight line
velocity is the change in displacement per unit time.
i can <u>when do u need it by</u> working on it now!!!