Answer:
Part a)

Part b)

Explanation:
As we know that magnetic flux through the loop is given as

now we have

now rate of change in flux is given as

now we know that



Now plug in all data


Part b)
Now the radius of the loop after t = 1 s



Now plug in data in above equation


Answer:
13.6 cm
Explanation:
From Snell's law:
n₁ sin θ₁ = n₂ sin θ₂
In the air, n₁ = 1, and light from the horizon forms a 90° angle with the vertical, so sin θ₁ = sin 90° = 1.
Given n₂ = 4/3:
1 = 4/3 sin θ
sin θ = 3/4
If x is the radius of the circle, then sin θ is:
sin θ = x / √(x² + 12²)
sin θ = x / √(x² + 144)
Substituting:
3/4 = x / √(x² + 144)
9/16 = x² / (x² + 144)
9/16 x² + 81 = x²
81 = 7/16 x²
x ≈ 13.6
Mass of the displaced material. In water it would be the mass of the water that the volume of the ball displaces.
The concept needed to solve this problem is average power dissipated by a wave on a string. This expression ca be defined as

Here,
= Linear mass density of the string
Angular frequency of the wave on the string
A = Amplitude of the wave
v = Speed of the wave
At the same time each of this terms have its own definition, i.e,
Here T is the Period
For the linear mass density we have that

And the angular frequency can be written as

Replacing this terms and the first equation we have that



PART A ) Replacing our values here we have that


PART B) The new amplitude A' that is half ot the wavelength of the wave is


Replacing at the equation of power we have that


Work = force x distance.
force = mass x acceleration
work = mass x acceleration x diastance
use acceleration of gravity in this problem
W (J) = m (kg) x a (m/s/s) x d (m)
W = 78 x 9.8 x 6
W = 4586.4