1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Usimov [2.4K]
3 years ago
9

To a good approximate, the only external force that does work on a cyclist moving on level ground is the force of air resistance

. Suppose a cyclist is traveling at 15 km/h on level ground. Assume he is using 480 W of metabolic power.
a. Estimate the amount of power he uses for forward motion.
b. How much force must he exert to overcome the force of air resistance?
Physics
1 answer:
mart [117]3 years ago
3 0

Answer:

a. 120 W

b. 28.8 N

Explanation:

To a good approximate, the only external force that does work on a cyclist moving on level ground is the force of air resistance. Suppose a cyclist is traveling at 15 km/h on level ground. Assume he is using 480 W of metabolic power.

a. Estimate the amount of power he uses for forward motion.

b. How much force must he exert to overcome the force of air resistance?

(a) He is 25% efficient, therefore the cyclist will be expending 25% of his power to drive the bicycle forward

Power = efficiency X metabolic power

= 0.25 X 480

= 120 W

(b)

power if force times the velocity

P = Fv

convert  15 km/h to m/s

v = 15 kmph = 4.166 m/s

F = P/v

= 120/4.166

= 28.8 N

definition of terms

power is the rate at which work is done

force is that which changes a body's state of rest or uniform motion in a straight line

velocity is the change in displacement per unit time.

You might be interested in
Explain why, under some circumstances, it is not advisable to weld a structure that is fabricated with a 3003 aluminum alloy. Hi
Scorpion4ik [409]

The 3003 aluminum alloy is made up of 1.25% Magnesium and 0.1% Copper. This combination is designed to increase the strength of the material over other types of alloys such as those of the 1000 series. This alloy provides a medium strength and can be educated by cold work.

The alloy is not heat treatable and generally has good formability, corrosion resistance and weldability.

However, being a material that hardens by cold work, welding a 3003 Aluminum structure will cause the body to undergo recrystallization which will generate a loss in the 'resistance' of the material and the force capable of withstanding. If this aluminum will be used for structural purposes, it should not be welded. It would be better to perform the structure with a 6061 aluminum, which has similar characteristics and is not so affected by welding.

7 0
3 years ago
Continuous and aligned fiber-reinforced composite with cross-sectional area of 340 mm2 (0.53 in.2) is subjected to a longitudina
Alecsey [184]

(a) 23.4

The fiber-to-matrix load ratio is given by

\frac{F_f}{F_m}=\frac{E_f V_f}{E_m V_m}

where

E_f = 131 GPa is the fiber elasticity module

E_m = 2.4 GPa is the matrix elasticity module

V_f=0.3 is the fraction of volume of the fiber

V_m=0.7 is the fraction of volume of the matrix

Substituting,

\frac{F_f}{F_m}=\frac{(131 GPa)(0.3)}{(2.4 GPa)(0.7)}=23.4 (1)

(b) 44,594 N

The longitudinal load is

F = 46500 N

And it is sum of the loads carried by the fiber phase and the matrix phase:

F=F_f + F_m (2)

We can rewrite (1) as

F_m = \frac{F_f}{23.4}

And inserting this into (2):

F=F_f + \frac{F_f}{23.4}

Solving the equation, we find the actual load carried by the fiber phase:

F=F_f (1+\frac{1}{23.4})\\F_f = \frac{F}{1+\frac{1}{23.4}}=\frac{46500 N}{1+\frac{1}{23.4}}=44,594 N

(c) 1,906 N

Since we know that the longitudinal load is the sum of the loads carried by the fiber phase and the matrix phase:

F=F_f + F_m (2)

Using

F = 46500 N

F_f = 44594 N

We can immediately find the actual load carried by the matrix phase:

F_m = F-F_f = 46,500 N - 44,594 N=1,906 N

(d) 437 MPa

The cross-sectional area of the fiber phase is

A_f = A V_f

where

A=340 mm^2=340\cdot 10^{-6}m^2 is the total cross-sectional area

Substituting V_f=0.3, we have

A_f = (340\cdot 10^{-6} m^2)(0.3)=102\cdot 10^{-6} m^2

And the magnitude of the stress on the fiber phase is

\sigma_f = \frac{F_f}{A_f}=\frac{44594 N}{102\cdot 10^{-6} m^2}=4.37\cdot 10^8 Pa = 437 MPa

(e) 8.0 MPa

The cross-sectional area of the matrix phase is

A_m = A V_m

where

A=340 mm^2=340\cdot 10^{-6}m^2 is the total cross-sectional area

Substituting V_m=0.7, we have

A_m = (340\cdot 10^{-6} m^2)(0.7)=238\cdot 10^{-6} m^2

And the magnitude of the stress on the matrix phase is

\sigma_m = \frac{F_m}{A_m}=\frac{1906 N}{238\cdot 10^{-6} m^2}=8.0\cdot 10^6 Pa = 8.0 MPa

(f) 3.34\cdot 10^{-3}

The longitudinal modulus of elasticity is

E = E_f V_f + E_m V_m = (131 GPa)(0.3)+(2.4 GPa)(0.7)=41.0 Gpa

While the total stress experienced by the composite is

\sigma = \frac{F}{A}=\frac{46500 N}{340\cdot 10^{-6}m^2}=1.37\cdot 10^8 Pa = 0.137 GPa

So, the strain experienced by the composite is

\epsilon=\frac{\sigma}{E}=\frac{0.137 GPa}{41.0 GPa}=3.34\cdot 10^{-3}

3 0
3 years ago
What describes a sound wave as it travels through a medium
Softa [21]
Sound waves in air (and any fluid medium) are longitudinal waves because particles of the medium through which the sound is transported vibrate parallel to the direction that the sound wave moves.
5 0
3 years ago
The opposite poles of two magnets will do which of the following
madam [21]

To what i see, the answer is....

C.

6 0
3 years ago
The gravitational strength at the poles is greater than the gravitational strength at the equator. What will happen to an object
geniusboy [140]

Answer:

C

Explanation:

Because this same question was on my test last week and I got it correct

3 0
3 years ago
Other questions:
  • A glass optical fiber is used to transport a light ray across a long distance. The fiber has an index of refraction of 1.550 and
    7·1 answer
  • What is your opinion on Moonman? ( Do not delete this saying it is "racist". it is simply a character from a commercial called M
    10·1 answer
  • What would you measure a large boulder in
    15·1 answer
  • Can anybody answer this​
    8·1 answer
  • Which of the following statements is not a prediction of the general theory of relativity?
    8·2 answers
  • A 1000-turn toroid has a central radius of 4.2 cm and is carrying a current of 1.7 A. The magnitude of the magnetic field along
    5·1 answer
  • A positively charged glass rod is bought close to a suspended metal needle. What
    11·2 answers
  • Name all the elements are in a molecule of indigo
    13·1 answer
  • Urgent help needed in number four.<br>Thank you in advance!​
    8·1 answer
  • Quations (3.4) and (3.5) are equivalent expressions for Lagrange's equations.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!