Answer: The Kelvin scale is related to the Celsius scale. The difference between the freezing and boiling points of water is 100 degrees in each, so that the kelvin has the same magnitude as the degree Celsius.
Explanation:
Celsius is, or relates to, the Celsius temperature scale (previously known as the centigrade scale). The degree Celsius (symbol: °C) can refer to a specific temperature on the Celsius scale as well as serve as a unit increment to indicate a temperature interval(a difference between two temperatures or an uncertainty). “Celsius” is named after the Swedish astronomer Anders Celsius (1701-1744), who developed a similar temperature scale two years before his death.
K = °C + 273.15
°C = K − 273.15
Until 1954, 0 °C on the Celsius scale was defined as the melting point of ice and 100 °C was defined as the boiling point of water under a pressure of one standard atmosphere; this close equivalence is taught in schools today. However, the unit “degree Celsius” and the Celsius scale are currently, by international agreement, defined by two different points: absolute zero, and the triple point of specially prepared water. This definition also precisely relates the Celsius scale to the Kelvin scale, which is the SI base unit of temperature (symbol: K). Absolute zero—the temperature at which nothing could be colder and no heat energy remains in a substance—is defined as being precisely 0 K and −273.15 °C. The triple point of water is defined as being precisely 273.16 K and 0.01 °C.
According to florida wildlife group who experimentally tape magnets to crocodile heads to disrupt their homing ability so they don't wander into residential areas
<span>Answers are:
-4 for C in CH4, because carbon has greater electronegativity than hydrogen and he attracts shared electrons.
</span><span>+4 for C in CO2, because carbon has smaller electronegativity than oxygen.
</span><span>+1 for H in both CH4 and H2O, because hydrogen has amaller electronegativity than both carbon and oxygen.
</span>
Molality is one way of expressing concentration for solutions. It has units of moles of solute per kg of solvent. From the given values, we easily calculate for the moles of solute by multiplying the mass of solvent to the molality. We do as follows:
moles solute = 0.3 (10) = 3 mol solute
Answer:
A. The reaction will proceed forward forming more CH4
B. The reaction will proceed forward forming more CH4
C. Since the reaction is exothermic, raising the temperature will cause the reaction to proceed backward, thus forming C and H2.
D. Lowering the volume makes the gas particles to be more close together thereby enhancing their collisions leading to reaction. Therefore the reaction will proceed forward forming more CH4
E. Catalyst only reduce the activation energy so the reaction can proceed faster. The reaction will proceed forward forming.
F. The following will favour CH4 at equilibrium
i. Catalyst to the reaction mixture,
ii. Both adding more H2 to the reaction mixture and lowering the volume of the reaction mixture
iii. Adding more C to the reaction mixture.