Option C: elements produce spectra with only few distinct lines.
The spectra are not continuos and are different for every element. This permits to identify elements.
Answer:
76.9L
Explanation:
Based on the graph, whenever the temperature increases by 100K, the volume increases by 10L, so do 769/10
Answer:
250 mL (total solution) = 104 mL (stock solution) + 146 mL (water)
Explanation:
Data Given
M1 = 6.00 M
M2 = 2.5 M
V1 = 250 mL
V2 = ?
Solution:
As the chemist needs to prepare 250 mL of solution from 6.00 M ammonium hydroxide solution to prepare a 2.50 M aqueous solution of ammonium hydroxide.
Now
first he have to determine the amount of ammonium hydroxide solution that will be taken from6.00 M ammonium hydroxide solution
For this Purpose we use the following formula
M1V1=M2V2
Put values from given data in the formula
6 x V1 = 2.5 x 250
Rearrange the equation
V1 = 2.5 x 250 /6
V1 = 104 mL
So 104 mL is the volume of the solution which we have to take from the 6.00 M ammonium hydroxide solution to prepare 2.5 M aqueous solution of ammonium hydroxide
But we have to prepare 250 mL of the solution.
so the chemist will take 104 mL from 6.00 M ammonium hydroxide solution and have to add 146 mL water to make 250 mL of new solution.
in this question you have to tell about the amount of water that is 146 mL
250 mL (total solution) = 104 mL (stock solution) + 146 mL (water)
The volume of the liquid in this diagram shown above would be equal to 36.5 mL.
<h3>What is a
graduated cylinder?</h3>
A graduated cylinder is also known as measuring cylinder and it can be defined as a narrow, cylindrical piece of laboratory equipment with marked lines, which are used to measure the volume of a liquid.
In order to take a reading for the measurement of the volume of a liquid such as water, you should ensure that your eye level is even with the center of the meniscus.
In this scenario, the volume of the liquid in this diagram would be 36.5 mL because each of the small lines on the graduated cylinder measures 0.5 mL.
Read more on graduated cylinder here: brainly.com/question/24869562
#SPJ1
Explanation:
First, we will calculate fuel consumption is as follows.

= 4526 g/s
Now, we will calculate the power as follows.
Power = Fuel consumption rate × -enthalpy of combustion
= 
=
kW
Thus, we can conclude that maximum power (in units of kilowatts) that can be produced by this spacecraft is
kW.