The answer is that the mold melting point must be higher then molten glass, otherwise the mold would melt when molten glass is poured into it .
I hope this helps :)
Answer:
1 .
2.
Explanation:
The more stable the ionic compound, the more is it lattice energy.
- The more the charge on the cation and the anion, the greater is the lattice energy.
- The less the size of the cation and the anion, the greater is the lattice energy.
Scandium oxide (
) is an oxide in which
behaves as cation and
behaves as anion.
The compounds which has higher lattice energy than scandium oxide are:
1 .
This is because the charge are same on the cation and the anion as in the case of the Scandium oxide but the size of the cation
is smaller than
. Thus, this corresponds to higher lattice energy.
2.
This is because the charge on the cation
is greater than that of
and also the size of the cation
is smaller than
. Thus, this corresponds to higher lattice energy.
Answer:
evaporation or water runoff that's my tips
rain or thunder storm
No it is redistributed and the state changes to gas and liquid
Answer:
(A) is 0.0773 mol B2H6
(C) is 2.79 x 10^23 H atoms
Explanation:
Questions (A) and (B) are the same.
2.14 g B2H6 x (1 mol B2H6/27.668g B2H6) = 0.0773 mol B2H6 (A)
<u>27.668 is the molar mass of B2H6 calculated from the period table: </u>
(2 x 10.81) + (6 x 1.008) = 27.668
1.008 is the mass of H and 10.81 is the mass of B
(C)
0.0773 mol B2H6 x (6 mol H/ 1 mol B2H6) x (6.022 x 10^23 H atoms/1 mol H)
= 2.79 x 10^23 hydrogen atoms
Further Explanation:
- For every 1 mol of B2H6, there are 6 moles of H (indicated by the subscript)
- 6.022 x 10^23 is Avogrado's number and it equals to 1 mol of anything
- Avogrado's number can be in units of atoms, molecules, or particles