Answer: The results agree with the law of conservation of mass
Explanation:
The law of conservation of mass states that mass is neither created nor destroyed in a chemical reaction. On the reactant side, the total mass of reactants is 14.3g and the total product masses is also 14.3g. That implies that no mass was !most in the reaction. The sum of masses on the left hand side corresponds with sum of masses on the right hand side of the reaction equation.
Answer is: <span>the pressure of the gas is 9,2 atm.
</span>p₁ = 4,0 atm.
T₁ = 300 K.
V₁ = 5,5 L.
p₂ = ?
T₂ = 250 K.
V₂ = 2,0 L.
Use combined gas law - the volume of amount of gas is proportional to the ratio of its Kelvin temperature and its pressure.<span>
</span>p₁V₁/T₁ = p₂V₂/T₂.
4 atm · 5,5 L ÷ 300 K = p₂ · 2,0 L ÷ 250 K.
0,0733 = 0,008p₂.
p₂ = 9,2 atm.
I think it’s the cell membrane if you’re talking about animal cells and plant cells.
Answer:
3.64g
Explanation:
Given parameters:
Mass of NH₃ = 18.1g
Mass of Cu₂O = 90.4g
Unknown:
Limiting reactant = ?
Mass of N₂ formed = ?
Solution:
The reaction equation is given as:
Cu₂O + 2NH₃ → 6Cu + N₂ + 3H₂O
The limiting reactant is the one in short supply in the reaction. Let us find the number of moles of the given species;
Number of moles =
Molar mass of Cu₂O = 2(63.6) + 16 = 143.2g/mol
Molar mass of NH₃ = 14 + 3(1) = 17g/mol
Number of moles of Cu₂O =
= 0.13moles
Number of moles of NH₃ =
= 5.32moles
From this reaction;
1 mole of Cu₂O combines with 2 mole of NH₃
So 0.13moles of Cu₂O will combine with 0.13 x 2 mole of NH₃
= 0.26moles of NH₃
Therefore, Cu₂O is the limiting reactant. Ammonia is in excess;
Mass of N₂;
Mass = number of moles x molar mass
1 mole of Cu₂O will produce 1 mole of N₂
0.13 mole of Cu₂O will produce 0.13 mole of N₂
Mass = 0.13 x (2 x 14) = 3.64g