From the periodic table:
molecular mass of carbon = 12 grams
molecular mass of fluorine = 18.99 grams
molecular mass of chlorine = 35.5 grams
Therefore:
one mole of CF2Cl2 = 12 + 2(18.99) + 2(35.5) = 120.98 grams
Therefore, we can use cross multiplication to find the number of moles in 79.34 grams as follows:
mass = (79.34 x 1) / 120.98 = 0.6558 moles
Now, one mole contains 6.022 x 10^23 molecules, therefore:
number of molecules in 0.65548 moles = 0.6558 x 6.022 x 10^23
= 3.949 x 10^23 molecules
Answer and Explanation:
a) The direction is shown in the cube diagram attached to this solution.
b) the angle between two planes (h₁, k₁, l₁) and (h₂, k₂, l₂) is given by the formula,
Cos Φ = (h₁h₂ + k₁k₂ + l₁)/√((h₁² + k₁² + l₁²)(h₂² + k₂² + l₂²))
For (111) and (112)
Cos Φ = (1.1 + 1.1 + 1.2)/√((1² + 1² + 1²)(1² + 1² + 2²))
Cos Φ = (1 + 1 + 2)/√((1+1+1)(1+1+4))
Cos Φ = 4/√(3×6)
Cos Φ = 4/√18
Φ = cos⁻¹ (4/√18) = 19.56°
c) equation 3.3 is missing from the question, I would be back to provide the answers to that as soon as the equation is provided!
Hope this Helps!!
Answer:
Generally, the first ionisation energy increases along a period. But there are some exceptions one which is not an exception
Answer:
Element 2
Explanation:
If we look at the model stated for element 1, it is clear that element 1 must be a noble gas. It has eight electrons in its outermost shell this implies that it has already attained a complete octet of electrons and is reluctant towards chemical reaction.
The second element belongs to group 16 since it has six electrons on its outermost shell. It is certainly more reactive than element 1 which is a noble gas.