Answer: physical
Explanation: freezing and melting are physical changes.
<u>Answer:</u> The value of
for the reaction at 690 K is 0.05
<u>Explanation:</u>
We are given:
Initial pressure of
= 1.0 atm
Total pressure at equilibrium = 1.2 atm
The chemical equation for the decomposition of phosgene follows:

Initial: 1 - -
At eqllm: 1-x x x
We are given:
Total pressure at equilibrium = [(1 - x) + x+ x]
So, the equation becomes:
![[(1 - x) + x+ x]=1.2\\\\x=0.2atm](https://tex.z-dn.net/?f=%5B%281%20-%20x%29%20%2B%20x%2B%20x%5D%3D1.2%5C%5C%5C%5Cx%3D0.2atm)
The expression for
for above equation follows:


Putting values in above equation, we get:

Hence, the value of
for the reaction at 690 K is 0.05
<span>Conductor, and there you go, i hope this helped but if its wrong, i am extremly sorry</span>
<span>1) 0.2M ferric nitrate is added gradually to 1M sodium hydroxide. In result, a red precipitate appears. The precipitate is ferric hydroxide.
2) </span><span>0.2M potassium chromate is added gradually to 0.05M lead acetate. in result, a yellow precipitate appears. The precipitate is called potassium acetate.
The common between the two is that the colors originated from one of the reactants. </span>
<h3>
Answer:</h3>
Temperature is 529.164 K
<h3>
Explanation:</h3>
We are given
Number of moles of Ne (n) = 0.019135 moles
Volume (V) = 878.3 mL
Pressure (P) = 0.946 atm
We are required to calculate the temperature;
We can do this using the ideal gas law equation which is;
PV = nRT, where P is the pressure, n is the number of moles, V is the volume, R is the ideal gas constant (0.082057 Latm/mol/K) and T is the temperature.
From the equation;



Therefore, the temperature will be 529.164 K.