Types of Bonds can be predicted by calculating the
difference in electronegativity.
If, Electronegativity difference is,
Less
than 0.4 then it is Non Polar Covalent Bond
Between 0.4 and 1.7 then it is Polar Covalent Bond
Greater than 1.7 then it is Ionic
For Br₂;
E.N of Bromine = 2.96
E.N of Bromine = 2.96
________
E.N Difference
0.00 (Non Polar Covalent Bond)
For MgS;
E.N of Sulfur = 2.58
E.N of Magnesium = 1.31
________
E.N Difference 1.27 (Ionic Bond)
For SO₂;
E.N of Oxygen = 3.44
E.N of Sulfur = 2.58
________
E.N Difference 0.86 (Polar Covalent Bond)
For KF;
E.N of Fluorine = 3.98
E.N of Potassium = 0.82
________
E.N Difference 3.16 (Ionic Bond)
Result: The Bonds in Br₂ and SO₂ are Covalent in Nature.
Answer:
2 moles
Explanation:
Let us first start by calculating the molecular mass of Al₂O₃.
The mass of a mole of any compound is called it's molar mass. 1 molar mass 6.02 X 10²³, or Avogadro's number, of compound entities.
Say, 1 mole of Al₂O₃ has 6.02 X 10²³ of Al₂O₃ molecules/atoms. It also has 2*6.02 X 10²³ number of Al atoms and 3*6.02 X 10²³ number of O atoms.
Molecular mass of Al : 26.981539 u
Molecular mass of O: 15.999 u
Therefore, molecular mass of Al₂O₃ is:
=
u
= 101.960078 u
This can be approximated to 102 u.
1mole weighs 102 u
So, 2moles will weigh 2*102 = 204 u
Answer:
Basically, paramagnetic and diamagnetic refer to the way a chemical species interacts with a magnetic field. More specifically, it refers to whether or not a chemical species has any unpaired electrons or not.
A diamagnetic species has no unpaired electrons, while a paramagnetic species has one or more unpaired electrons.
Now, I won't go into too much detail about crystal field theory in general, since I assume that you're familiar with it.
So, you're dealing with the hexafluorocobaltate(III) ion, [CoF6]3â’, and the hexacyanocobaltate(III) ion, [Co(CN)6]3â’.
You know that [CoF6]3â’ is paramagnetic and that [Co(CN)6]3â’ is diamagnetic, which means that you're going to have to determine why the former ion has unpaired electrons and the latter does not.
Both complex ions contain the cobalt(III) cation, Co3+, which has the following electron configuration
Co3+:1s22s22p63s23p63d6
For an isolated cobalt(III) cation, all these five 3d-orbitals are degenerate. The thing to remember now is that the position of the ligand on the spectrochemical series will determine how these d-orbtals will split.
More specifically, you can say that
a strong field ligand will produce a more significant splitting energy, Δ a weak field ligand will produce a less significant splitting energy, Δ
Now, the spectrochemical series looks like this
http://chemedu.pu.edu.tw/genchem/delement/9.htmhttp://chemedu.pu.edu.tw/genchem/delement/9.htm
Notice that the cyanide ion, CNâ’, is higher on the spectrochemical series than the fluoride ion, Fâ’. This means that the cyanide ion ligands will cause a more significant energy gap between the eg and t2g orbitals when compared with the fluoride ion ligands.
http://wps.prenhall.com/wps/media/objects/3313/3393071/blb2405.htmlhttp://wps.prenhall.com/wps/media...
In the case of the hexafluorocobaltate(III) ion, the splitting energy is smaller than the electron pairing energy, and so it is energetically favorable to promote two electrons from the t2g orbitals to the eg orbitals → a high spin complex will be formed.
This will ensure that the hexafluorocobaltate(III) ion will have unpaired electrons, and thus be paramagnetic.
On the other hand, in the case of the hexacyanocobaltate(III) ion, the splitting energy is higher than the electron pairing energy, and so it is energetically favorable to pair up those four electrons in the t2g orbitals → a low spin complex is formed.
Since it has no unpaired electrons, the hexacyanocobaltate(III) ion will be diamagnetic.
Answer:
The answer is: the body contains chemicals called buffers that resist changes in pH
When you exercise vigorously, the muscle will produce more carbon dioxide which will makes the blood more acidic. Human blood have some mechanism that could prevent the blood pH to stray further from the optimal range. One of the buffer that keep carbon dioxide acidity would be sodium bicarbonate.
Explanation:
<h2>
it just be like that sometimes my dude</h2>