Answer:
Steps:
1. Create a text file that contains blade diameter (in feet), wind velocity (in mph) and the approximate electricity generated for the year
2. load the data file for example, in matlab, use ('fileame.txt') to load the file
3. create variables from each column of your data
for example, in matlab,
x=t{1}
y=t{2}
4. plot the wind velocity and electricity generated.
plot(x, y)
5. Label the individual axis and name the graph title.
title('Graph of wind velocity vs approximate electricity generated for the year')
xlabel('wind velocity')
ylabel('approximate electricity generated for the year')
Answer:
86 mm
Explanation:
From the attached thermal circuit diagram, equation for i-nodes will be
Equation 1
Similarly, the equation for outer node “o” will be
Equation 2
The conventive thermal resistance in i-node will be
Equation 3
The conventive hermal resistance per unit area is
Equation 4
The conductive thermal resistance per unit area is
Equation 5
Since is given as 100, is 40 is 300 is 25
Substituting the values in equations 3,4 and 5 into equations 1 and 2 we obtain
Equation 6
Equation 7
From equation 6 we can substitute wherever there’s with 3000L+40 as seen in equation 7 hence we obtain
The above can be simplified to be
-3000L=1.665-260
Therefore, insulation thickness is 86mm
The process of using magnetic fields to produce voltage.
Answer:
1. Equatorial Evergreen or Rainforest
2. Tropical forest
3. Mediterranean forest
4. Temperate broad-leaved forest
5. Warm temperate forest
Explanation: