Answer:
Electrons get farther from the nucleus.
Explanation:
By going from the top to the bottom of a group, the atomic number increases. That would mean that:
- The number of orbitals increases, as there are more electrons.
- A higher atomic number implies an increasing number of neutrons.
- As there are more electrons, they get farther from the nucleus. The farther an electron is from the nucleus, the easier it is for the electron to be removed from the atom.
step one
calculate the % of oxygen
from avogadro constant
1moles = 6.02 x 10 ^23 atoms
what about 4.33 x10^22 atoms
= ( 4.33 x 10^ 22 x 1 mole ) / 6.02 10^23= 0.0719 moles
mass= 0.0719 x16= 1.1504 g
% composition is therefore= ( 1.1504/3.25) x100 = 35.40%
step two
calculate the % composition of chrorine
100- (25.42 + 35.40)=39.18%
step 3
calculate the moles of each element
that is
Na = 25.42 /23=1.1052 moles
Cl= 39.18 /35.5=1.1037moles
O= 35.40/16= 2.2125 moles
step 4
find the mole ratio by dividing each mole by 1.1037 moles
that is
Na = 1.1052/1.1037=1.001
Cl= 1.1037/1.1037= 1
0=2.2125 = 2
therefore the empirical formula= NaClO2
On the second shell there are two individual subshells:
The "s" subshell has only 1 orbital with max. two electrons spinning around; and the so-called "p" subshell has 3 orbitals with max. 6 electrons (2 on each!)
In total, there are four orbitals with 8 revolving electrons on the second shell.
Hope could help :)
The pressure exerted by 0.400 moles of carbon dioxide in a 5.00 Liter container at 25 °C would be 1.9563 atm or 1486.788 mm Hg.
<h3>The ideal gas law</h3>
According to the ideal gas law, the product of the pressure and volume of a gas is a constant.
This can be mathematically expressed as:
pv = nRT
Where:
p = pressure of the gas
v = volume
n = number of moles
R = Rydberg constant (0.08206 L•atm•mol-1K)
T = temperature.
In this case:
p is what we are looking for.
v = 5.00 L
n = 0.400 moles
T = 25 + 273
= 298 K
Now, let's make p the subject of the formula of the equation.
p = nRT/v
= 0.400 x 0.08206 x 298/5
= 1.9563 atm
Recall that: 1 atm = 760 mm Hg
Thus:
1.9563 atm = 1.9563 x 760 mm Hg
= 1486.788 mm Hg
In other words, the pressure exerted by the gas in atm is 1.9563 atm and in mm HG is 1486.788 mm Hg.
More on the ideal gas law can be found here: brainly.com/question/28257995
#SPJ1
Solubility of barium chloride at 30 degree Celsius is 38.2g /100 g water and solubility of barium chloride at 60 degree Celsius is 46.6 g / 100 g water.
The quantity of barium chloride that is dissolved in water at 30 degree Celsius = 38.2 * [150/100] = 57.30 g.
The quantity of barium chloride that will be dissolved in water at 60 degree Celsius = 46.6 * [150/100] = 69.90 g
The difference between these quantities is the amount of barium chloride that can be dissolved by heating the barium chloride to 60 degree Celsius.
69.90 - 57.30 = 12.60 g. Therefore, 12.60 g of barium chloride can still be dissolved in the water by heating the water to 60 degree Celsius.