1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Reika [66]
3 years ago
13

Please. my brain isn’t working right now

Engineering
1 answer:
Alex787 [66]3 years ago
7 0

Answer:

10kQ is to 36......... D2 _ D1 D4

You might be interested in
A hot brass plate is having its upper surface cooled by impinging jet of air at temperature of 15°C and convection heat transfer
gulaghasi [49]

Answer:

809.98°C

Explanation:

STEP ONE: The first step to take in order to solve this particular Question or problem is to find or determine the Biot value.

Biot value = (heat transfer coefficient × length) ÷ thermal conductivity.

Biot value = (220 × 0.1)÷ 110 = 0.2.

Biot value = 0.2.

STEP TWO: Determine the Fourier number. Since the Biot value is greater than 0.1. Tis can be done by making use of the formula below;

Fourier number = thermal diffusivity × time ÷ (length)^2.

Fourier number = (3 × 60 × 33.9 × 10^-6)/( 0.1)^2 = 0.6102.

STEP THREE: This is the last step for the question, here we will be calculating the temperature of the center plane of the brass plate after 3 minutes.

Thus, the temperature of the center plane of the brass plane after 3 minutes = (1.00705) (0.89199) (900- 15) + 15.

= > the temperature of the center plane of the brass plane after 3 minutes = 809.98°C.

5 0
3 years ago
Which examples demonstrate tasks commonly performed in Maintenance/Operations jobs? Check all that apply.
Verdich [7]

1.Ross fixes a dishwasher for a homeowner.

3.Cassandra fixes holes in an old road.

4 0
3 years ago
Read 2 more answers
Refrigerant 134a enters the evaporator of a refrigeration system operating at steady state at -16oC and a quality of 20% at a ve
Dmitry [639]

Answer:

mass flow rate = 0.0534 kg/sec

velocity at exit = 29.34 m/sec

Explanation:

From the information given:

Inlet:

Temperature T_1 = -16^0\ C

Quality x_1 = 0.2

Outlet:

Temperature T_2 = -16^0 C

Quality  x_2 = 1

The following data were obtained at saturation properties of R134a at the temperature of -16° C

v_f= 0.7428 \times 10^{-3} \ m^3/kg \\ \\  v_g = 0.1247 \ m^3 /kg

v_1 = v_f + x_1 ( vg - ( v_f)) \\ \\ v_1 = 0.7428 \times 10^{-3} + 0.2 (0.1247 -(0.7428 \times 10^{-3})) \\ \\  v_1 = 0.0255 \ m^3/kg \\ \\ \\  v_2 = v_g = 0.1247 \ m^3/kg

m = \rho_1A_1v_1 = \rho_2A_2v_2 \\ \\  m = \dfrac{1}{0.0255} \times \dfrac{\pi}{4}\times (1.7 \times 10^{-2})^2\times 6  \\ \\ \mathbf{m = 0.0534 \ kg/sec}

\rho_1A_1v_1 = \rho_2A_2v_2 \\ \\ A_1 =A_2  \\ \\  \rho_1v_1 = \rho_2v_2   \\ \\ \implies \dfrac{1}{0.0255} \times6 = \dfrac{1}{0.1247}\times (v_2)\\ \\ \\\mathbf{\\ v_2 = 29.34 \ m/sec}

3 0
3 years ago
(3) Calculate the heat flux through a sheet of brass 7.5 mm (0.30 in.) thick if the temperatures at the two faces are 150°Cand 5
bezimeni [28]

Answer:

a.) 1.453MW/m2,  b.)  2,477,933.33 BTU/hr  c.) 22,733.33 BTU/hr  d.) 1,238,966.67 BTU/hr

Explanation:

Heat flux is the rate at which thermal (heat) energy is transferred per unit surface area. It is measured in W/m2

Heat transfer(loss or gain) is unit of energy per unit time. It is measured in W or BTU/hr

1W = 3.41 BTU/hr

Given parameters:

thickness, t = 7.5mm = 7.5/1000 = 0.0075m

Temperatures 150 C = 150 + 273 = 423 K

                        50 C = 50 + 273 = 323 K

Temperature difference, T = 423 - 323 = 100 K

We are assuming steady heat flow;

a.) Heat flux, Q" = kT/t

K= thermal conductivity of the material

The thermal conductivity of brass, k = 109.0 W/m.K

Heat flux, Q" = \frac{109 * 100}{0.0075} = 1,453,333.33 W/m^{2} \\ Heat flux, Q" = 1.453MW/m^{2} \\

b.) Area of sheet, A = 0.5m2

Heat loss, Q = kAT/t

Heat loss, Q = \frac{109*0.5*100}{0.0075} = 726,666.667W

Heat loss, Q = 726,666.667 * 3.41 = 2,477,933.33 BTU/hr

c.) Material is now given as soda lime glass.

Thermal conductivity of soda lime glass, k is approximately 1W/m.K

Heat loss, Q=\frac{1*0.5*100}{0.0075} = 6,666.67W

Heat loss, Q = 6,666.67 * 3.41 = 22,733.33 BTU/hr

d.) Thickness, t is given as 15mm = 15/1000 = 0.015m

Heat loss, Q=\frac{109*0.5*100}{0.015} =363,333.33W

Heat loss, Q = 363,333.33 * 3.41 = 1,238,966.67 BTU/hr

5 0
3 years ago
Student A says hazardous waste can take the form of solid, liquid, or gas. Student B says hazardous waste can only take the form
lina2011 [118]

Answer:

Student A

Explanation:

hope this helps have a great day

4 0
3 years ago
Other questions:
  • Which of the following is not true about Machine Learning?Machine Learning was inspired by the learning process of human beings.
    11·1 answer
  • ANSWER QUICK<br>Why did Winston Churchill take over for Neville Chamberlain shortly after ww2? ​
    9·1 answer
  • 1. An air standard cycle is executed within a closed piston-cylinder system and consists of three processes as follows:1-2 = con
    5·1 answer
  • Consider the following incomplete code segment, which is intended to print the sum of the digits in num. For example, when num i
    8·1 answer
  • Find values of the intrinsic carrier concentration n for silicon at –70° 0° 20° C, 100° C, and C. At 125° each temperature, what
    14·1 answer
  • What did August Comte contribute to sociology including positivism
    11·1 answer
  • An astronomer of 65 kg of mass hikes from the beach to the observatory atop the mountain in Mauna Kea, Hawaii (altitude of 4205
    15·1 answer
  • a metal rod 24mm diameter and 2m long is subjected to an axial pull of 40 kN. If the rod is 0.5mm, then find the stress-induced
    15·1 answer
  • If a student doesn't major in Engineering as an undergraduate, They could still find a successful
    9·2 answers
  • Not all projects that engineers work on will have human factors involved.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!