Answer:

Explanation:
The HF is about five million times as strong as phenol, so it will be by far the major contributor of hydronium ions. We can ignore the contribution from the phenol.
1 .Calculate the hydronium ion concentration
We can use an ICE table to organize the calculations.
HF + H₂O ⇌ H₃O⁺ + F⁻
I/mol·L⁻¹: 2.7 0 0
C/mol·L⁻¹: -x +x +x
E/mol·L⁻¹: 2.7 - x x x
![K_{\text{a}} = \dfrac{\text{[H}_{3}\text{O}^{+}] \text{F}^{-}]} {\text{[HF]}} = 7.2 \times 10^{-4}\\\\\dfrac{x^{2}}{2.7 - x} = 7.2 \times 10^{-4}\\\\\text{Check for negligibility of }x\\\\\dfrac{2.7}{7.2 \times 10^{-4}} = 4000 > 400\\\\\therefore x \ll 2.7\\\dfrac{x^{2}}{2.7} = 7.2 \times 10^{-4}\\\\x^{2} = 2.7 \times 7.2 \times 10^{-4} = 1.94 \times 10^{-3}\\x = 0.0441\\\text{[H$_{3}$O$^{+}$]}= \text{x mol$\cdot$L$^{-1}$} = \text{0.0441 mol$\cdot$L$^{-1}$}](https://tex.z-dn.net/?f=K_%7B%5Ctext%7Ba%7D%7D%20%3D%20%5Cdfrac%7B%5Ctext%7B%5BH%7D_%7B3%7D%5Ctext%7BO%7D%5E%7B%2B%7D%5D%20%5Ctext%7BF%7D%5E%7B-%7D%5D%7D%20%7B%5Ctext%7B%5BHF%5D%7D%7D%20%3D%207.2%20%5Ctimes%2010%5E%7B-4%7D%5C%5C%5C%5C%5Cdfrac%7Bx%5E%7B2%7D%7D%7B2.7%20-%20x%7D%20%3D%207.2%20%5Ctimes%2010%5E%7B-4%7D%5C%5C%5C%5C%5Ctext%7BCheck%20for%20negligibility%20of%20%7Dx%5C%5C%5C%5C%5Cdfrac%7B2.7%7D%7B7.2%20%5Ctimes%2010%5E%7B-4%7D%7D%20%3D%204000%20%3E%20400%5C%5C%5C%5C%5Ctherefore%20x%20%5Cll%202.7%5C%5C%5Cdfrac%7Bx%5E%7B2%7D%7D%7B2.7%7D%20%3D%207.2%20%5Ctimes%2010%5E%7B-4%7D%5C%5C%5C%5Cx%5E%7B2%7D%20%3D%202.7%20%5Ctimes%207.2%20%5Ctimes%2010%5E%7B-4%7D%20%3D%201.94%20%5Ctimes%2010%5E%7B-3%7D%5C%5Cx%20%3D%200.0441%5C%5C%5Ctext%7B%5BH%24_%7B3%7D%24O%24%5E%7B%2B%7D%24%5D%7D%3D%20%5Ctext%7Bx%20mol%24%5Ccdot%24L%24%5E%7B-1%7D%24%7D%20%3D%20%5Ctext%7B0.0441%20mol%24%5Ccdot%24L%24%5E%7B-1%7D%24%7D)
2. Calculate the pH
![\text{pH} = -\log{\rm[H_{3}O^{+}]} = -\log{0.0441} = \large \boxed{\mathbf{1.36}}](https://tex.z-dn.net/?f=%5Ctext%7BpH%7D%20%3D%20-%5Clog%7B%5Crm%5BH_%7B3%7DO%5E%7B%2B%7D%5D%7D%20%3D%20-%5Clog%7B0.0441%7D%20%3D%20%5Clarge%20%5Cboxed%7B%5Cmathbf%7B1.36%7D%7D)
3. Calculate [C₆H₅O⁻]
C₆H₅OH + H₂O ⇌ C₆H₅O⁻ + H₃O⁺
2.7 x 0.0441

Answer:
a. 4—ethyl—5—methyloctane
b. 2,2,6—trimethyloctane
Explanation:Please see attachment for explanation
Answer:
4,38%
small molecular volumes
Decrease
Explanation:
The percent difference between the ideal and real gas is:
(47,8atm - 45,7 atm) / 47,8 atm × 100 = 4,39% ≈ <em>4,38%</em>
This difference is considered significant, and is best explained because argon atoms have relatively <em>small molecular volumes. </em>That produce an increasing in intermolecular forces deviating the system of ideal gas behavior.
Therefore, an increasing in volume will produce an ideal gas behavior. Thus:
If the volume of the container were increased to 2.00 L, you would expect the percent difference between the ideal and real gas to <em>decrease</em>
<em />
I hope it helps!
Answer:
C is the excess reactant.
Explanation:
Reaction is C + O2 --> CO2
1mol of C required to react with 1mol O2
Therefore 15 - 10 = 5moles of C will be in excess
Answer:
The desert should be divided into different types based on its properties. The organisms living in specific type of desert should be named accordingly.
Explanation:
There are usually five major types of desert in the world. Tropical, rainy, semi arid desert, coastal desert and dry desert. There are many different types of organisms living in these deserts. The biodiversity has made it difficult for the humans to analyse and identify the millions of different types. The best way is to organize and name the organisms that live in specific types of deserts.