The acceleration on the 5kg block is 1.088m/s^2
Data;
- mass(a) = 4kg
- mass (b) = 5kg
- acceleration of the 5kg block.
<h3>The Acceleration on the 5kg block</h3>
To solve this question, we just need to use Newton's second law of motion which states that "the time rate of change of the momentum of a body is equal in both magnitude and direction to the force imposed on it."

But then the force on both sides will be

The acceleration on the 5kg block is 1.088m/s^2
Learn more on newton's second law of motion here;
brainly.com/question/3050695
brainly.com/question/13447525
Answer:
See the answers below.
Explanation:
We can solve both problems using Newton's second law, which tells us that the sum of forces on a body is equal to the product of mass by acceleration.
∑F =m*a
where:
F = force [N] (units of newtons)
m = mass = 1000 [kg]
a = acceleration = 3 [m/s²]
![F = 1000*3\\F=3000[N]](https://tex.z-dn.net/?f=F%20%3D%201000%2A3%5C%5CF%3D3000%5BN%5D)
And the weight of any body can be calculated by means of the mass product by gravitational acceleration.
![W=m*g\\W=1000*9.81\\W=9810 [N]](https://tex.z-dn.net/?f=W%3Dm%2Ag%5C%5CW%3D1000%2A9.81%5C%5CW%3D9810%20%5BN%5D)
Answer:
horizontal component of normal force is equal to the centripetal force on the car
Explanation:
As the car is moving with uniform speed in circle then the force required to move in the circle is towards the center of the circle
This force is due to friction force when car is moving in circle with uniform speed
Now it is given that car is moving on the ice surface such that the friction force is zero now
so here we can say that centripetal force is due to component of the normal force which is due to banked road
Now we have


so we have

so this is horizontal component of normal force is equal to the centripetal force on the car
Answer:
a) 0.3 m
b) r = 0.45 m
Explanation:
given,
q₁ = 0.44 n C and q₂ = 11.0 n C
assume the distance be r from q₁ where the electric field is zero.
distance of point from q₂ be equal to 1.8 -r
now,
E₁ = E₂



1.8 = 6 r
r = 0.3 m
<h3>b) zero when one charge is negative.</h3>
let us assume q₁ be negative so, distance from q₁ be r
from charge q₂ the distance of the point be 1.8 +r
now,
E₁ = E₂



1.8 =4 r
r = 0.45 m