Answer:
The answer to your question is given below
Explanation:
Since both object A and B were dropped from the same height and the air resistance is negligible, both object A and B will get to the ground at the same time.
From the question, we were told that object A falls through a distance to dA at time t and object B falls through a distance of dB at time 2t.
Remember, both objects must get to the ground at the same time..!
Let the time taken for both objects to get to the ground be t.
Time A = Time B = t
But B falls through time 2t
Therefore,
Time A = Time B = 2t
Height = 1/2gt^2
For A:
Time = 2t
dA = 1/2 x g x (2t)^2
dA = 1/2g x 4t^2
For B
Time = t
dB = 1/2 x g x t^2
Equating dA and dB
dA = dB
1/2g x 4t^2 = 1/2 x g x t^2
Cancel out 1/2, g and t^2
4 = 1
4dA = dB
Divide both side by 4
dA = 1/4 dB
Answer:
(a). The rotational inertia is 
(b). The magnitude of the magnetic torque is 
Explanation:
Given that,
Mass of neutron 
Density of neutron 
(a). We need to calculate the rotational inertia
Using formula of rotational inertia for sphere
...(I)
We know that,

Put the value of volume


Put the value of R in equation (I)

Put the value into the formula


The rotational inertia is
.
(b). We need to calculate the magnitude of the magnetic torque
Using formula of torque

Put the value into the formula


The magnitude of the magnetic torque is 
Hence, (a). The rotational inertia is 
(b). The magnitude of the magnetic torque is 
Answer:
Explanation:
a) the speed=
V=√2gr²/2r
=√gr/2
√10*637/2
V=31850m/s²
Magnitude of the acceleration
a=Gm/r²
10*238/(6370)²
2380/12740
=0.187
Answer:
437 J
Explanation:
Parameters given:
Weight of child, W = 230 N
Height of swing, h = 1.9 m
Gravitational Potential Energy is given as:
P. E. = m*g*h = W*h
m = mass
h = height above the ground
W = weight
P. E. = 230 * 1.9
P. E. = 437 J