Answer:
a
Explanation:
it explains the most, and it is the correct theorem
Answer: a) The rate constant, k, for this reaction is
b) No
does not depend on concentration.
Explanation:
Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.

Given: Order with respect to
= 1
Thus rate law is:
a) ![Rate=k[A]^1](https://tex.z-dn.net/?f=Rate%3Dk%5BA%5D%5E1)
k= rate constant
![0.00250=k[0.484]^1](https://tex.z-dn.net/?f=0.00250%3Dk%5B0.484%5D%5E1)

The rate constant, k, for this reaction is
b) Expression for rate law for first order kinetics is given by:

where,
k = rate constant
t = age of sample
a = let initial amount of the reactant
a - x = amount left after decay process
Half life is the amount of time taken by a radioactive material to decay to half of its original value.


Thus
does not depend on concentration.
Answer:
22kj
Explanation:
set h = 0 at the end of slide.
final height is -12m
initial condition will be Ui = 0
Ki = 1/2mv² = 1/2 x 61 x (27)² = 22234.5J
Final condition is Ui = mgh = 61 x 9.8 x -12 = -7173J
Ki = 1/2mv²
Ki= 1/2 x 61 x (16)² = 7808J
conservation energy says that
Ui + Ki = Uf +Kf +ΔEth
so ΔEth = Ui + Ki - Uf - Kf
ΔEth = 22234.5 - 7808 + 7173
ΔEth = 21600J
ΔEth =22Kj
Answer:
6.22 N/m
Explanation:
From Hooke's law we deduce that F=kx where F is the applied force and k is the spring constant while x is the extension or compression of the spring. Making k the subject of the above formula then

We also know that the force F is equal to mg where m is the mass of an object and g is acceleration due to gravity hence substituting F with mg we get that

Substituting m with 425 g which is equivalent to 0.425 kg and g with 9.81 then 0.67 for x we get that

Therefore, the spring constant is approximately 6.22 N/m
Answer:
I need a picture
Explanation:
please elaborate. I need to get brainliest so I have to answer questions and get them right so send a picture so I can see the equation.