Answer:im so sorry i cant find anything either ask your teacher for some help is the best thing i can do
Answer:
7 / 1
Explanation:
The ratio of their amplitude = one-seventh and the ratio of their amplitude = the ratio of their wavelength
Ax / Ay = λx / λy = 1 / 7
λy / λx = 7 / 1
1) In the first case, the correct answer is
<span>A.Wavelengths measured would match the actual wavelengths emitted.
In fact, the stars are not moving relative to Earth, so there is no shift in the measured wavelength.
2) In this second case, the correct answer is
</span><span>A.Wavelengths measured would be shorter than the actual wavelengths emitted.
</span>in fact, since the stars in this case are moving towards the Earth, then apparent frequency of their emitted light will be larger than the actual frequency, because of the Doppler effect, according to the formula:

where f0 is the actual frequency, f' the apparent frequency, c the speed of light and vs the velocity of the source (the stars) relative to the obsever (Earth). Vs is negative when the source is moving towards the observer, so the apparent frequency f' is larger than the actual frequency f0. But the wavelength is inversely proportional to the frequency, so the apparent wavelength will be shorter than the actual wavelength.
Answer:
4. Force = 178.6 Newton.
5. Acceleration = 2.28 m/s².
6. Force = 178.6 Newton.
Explanation:
4. Given the following data;
Acceleration = 3.8 m/s²
Mass = 47kg
Force = mass * acceleration
Force = 47 * 3.8
<em>Force = 178.6 Newton. </em>
5. Given the following data;
Force = 785N
Mass = 345kg
Acceleration = force/mass
Acceleration = 785/345
<em>Acceleration = 2.28 m/s²</em>
6. Given the following data;
Acceleration = 6m/s²
Force = 32N
Mass =force/acceleration
Mass = 32/6
<em>Mass = 5.33 kilograms </em>