Answer : The correct option is, 13.7 mole
Solution : Given,
Moles of
= 27.4 moles
The given balanced chemical reaction is,

From the balanced chemical reaction, we conclude that
As, 2 moles of
react with 1 moles of 
So, 27.4 moles of
react with
moles of 
Therefore, the number of moles of oxygen
required are, 13.7 moles
The equilibrium constant for the reaction is 0.00662
Explanation:
The balanced chemical equation is :
2NO2(g)⇌2NO(g)+O2(g
At t=t 1-2x ⇔ 2x + x moles
The ideal gas law equation will be used here
PV=nRT
here n=
=
= density
P =
density is 0.525g/L, temperature= 608.15 K, P = 0.750 atm
putting the values in reaction
0.75 = 
M = 34.61
to calculate the Kc
Kc=![\frac{ [NO] [O2]}{NO2}](https://tex.z-dn.net/?f=%5Cfrac%7B%20%5BNO%5D%20%5BO2%5D%7D%7BNO2%7D)
x M NO2 +
M NO+
M O2
Putting the values as molecular weight of NO2, NO,O2

34.61= 
x= 0.33
Kc= 
putting the values in the above equation
Kc = 0.00662
Answer : 50.69 mg of ascorbic acid does not meet the daily requirement.
Solution : Given,
Molar mass of Ascorbic acid = 176 g/mole
Moles of Ascorbic acid = 
Formula used :

or, 
Now put all the given values in this formula, we get the mass of ascorbic acid.

Conversion : 
As per question, a healthy adult’s daily requirement of vitamin C is 70-90 mg. But calculate mass of vitamin C is 50.69 mg. So, 50.69 mg of ascorbic acid does not meet the daily requirement.
Answer:
a) 
b) 
Explanation:
Equation of reaction:

Initial pressure 3 1 0
Pressure change 2P 1P 2P
Total pressure = (3-2P) + (1-P) + (2P)
Total Pressure = 3.75 atm
(3-2P) + (1-P) + (2P) = 3.75
4 - P = 3.75
P = 4 - 3.75
P = 0.25 atm
Let us calculate the pressure of each of the components of the reaction:
Pressure of XO2 = 3 - 2P = 3 - 2(0.25)
Pressure of XO2 =2.5 atm
Pressure of O2 = 1 - P = 1 -0.25
Pressure of O2 = 0.75 atm
Pressure of XO3 = 2P = 2 * 0.25
Pressure of XO3 = 0.5 atm
From the reaction, equilibrium constant can be calculated using the formula:
![K_{p} = \frac{[PXO_{3}] ^{2} }{[PXO_{2}] ^{2}[PO_{2}] }](https://tex.z-dn.net/?f=K_%7Bp%7D%20%3D%20%5Cfrac%7B%5BPXO_%7B3%7D%5D%20%5E%7B2%7D%20%7D%7B%5BPXO_%7B2%7D%5D%20%5E%7B2%7D%5BPO_%7B2%7D%5D%20%7D)

Standard free energy:

b) value of k−1 at 27 °C, i.e. 300K


