E. co and n2Effusion is the process where gas escapes through a hole. Gases with a lower molecular mass effuse more speedy than gases with a higher molecular mass. R<span>elative rates of effusion is related to the molecular mass.
a) M(N</span>₂)/M(O₂) = 28/32 = 0,875
b) M(N₂O)/M(NO₂) = 44/46 = 0,956
c) M(CO)/M(CO₂) = 28/44 = 0,636
d) M(NO₂)/M(N₂O₂) = 44/58= 0,758
e) M(CO)/M(N₂) = 28/28 = 1, <span>CO and N</span>₂ <span>have iexact molecular masses and will effuse at nearly identical rates.</span>
We will use Arrehenius equation
lnK = lnA -( Ea / RT)
R = gas constant = 8.314 J / mol K
T = temperature = 25 C = 298 K
A = frequency factor
ln A = ln (1.5×10 ^11) = 25.73
Ea = activation energy = 56.9 kj/mol = 56900 J / mol
lnK = 25.73 - (56900 / 8.314 X 298) = 2.76
Taking antilog
K = 15.8
The component of the candle burning in the surrounding has been the oxygen in the air.
The burning of candle wax and wick has been the chemical reaction. It has been based on the reaction of wick with the atmospheric oxygen, resulting in the formulation of the wax burning.
<h3>Chemical reaction of burning of wax</h3>
The wax has been vaporizes by the heat of the flame, that has been resulted by the burning. The wick has been able to react with the oxygen and form the byproducts that helps in flame burning.
The end products have been wick and oxygen as the wax has been consumed in the reaction. The air in the surrounding has oxygen as the part of the system, as it has been involved in the reaction.
Learn more about candle burning, here:
brainly.com/question/25955977
Answer:
#1 Exposition
#2 Background information
#3 Complication
this is right unless you're speaking of theme plot conflict climax falling action or conclusion
One of the many awe-inspiring things about algae, Professor Greene explains, is that they can grow between ten and 100 times faster than land plants. In view of this speedy growth rate – combined with the fact they can thrive virtually anywhere in the right conditions – growing marine microalgae could provide a variety of solutions to some of the world’s most pressing problems.
Take, global warming. Algae sequesters CO2, as we have learned, but owing to the fact they grow faster than land plants, can cover wider areas and can be utilised in bioreactors, they can actually absorb CO2 more effectively than land plants. AI company Hypergiant Industries, for instance, say their algae bioreactor was 400 times more efficient at taking in CO2 than trees.
And it’s not just their nutritional credentials which could solve humanity’s looming food crisis, but how they are produced. Marine microalgae grow in seawater, which means they do not rely on arable land or freshwater, both of which are in limited supply. Professor Greene believes the use of these organisms could therefore release almost three million km2 of cropland for reforestation, and also conserve one fifth of global freshwater