Answer:
C₅ H₁₂ O
Explanation:
44 g of CO₂ contains 12 g of C
30.2 g of CO₂ will contain 12 x 30.2 / 44 = 8.236 g of C .
18 g of H₂O contains 2 g of hydrogen
14.8 g of H₂0 will contain 1.644 g of H .
total compound = 12.1 out of which 8.236 g is C and 1.644 g is H , rest will be O
gram of O = 2.22
moles of C, O, H in the given compound = 8.236 / 12 , 2.22 / 16 , 1.644 / 1
= .6863 , .13875 , 1.644
ratio of their moles = 4.946 : 1 : 11.84
rounding off to digits
ratio = 5 : 1 : 12
empirical formula = C₅ H₁₂ O
Answer:
https://youtu.be/3zmeVamEsWI
Explanation:
It is defined as the ratio of moles of one substance to the moles of another substance in a balanced equation. ... Mole ratios are the central step in performing stoichiometry because they allow us to convert moles of one substance to moles of another substance.
Answer:
She can add 380 g of salt to 1 L of hot water (75 °C) and stir until all the salt dissolves. Then, she can carefully cool the solution to room temperature.
Explanation:
A supersaturated solution contains more salt than it can normally hold at a given temperature.
A saturated solution at 25 °C contains 360 g of salt per litre, and water at 70 °C can hold more salt.
Yasmin can dissolve 380 g of salt in 1 L of water at 70 °C. Then she can carefully cool the solution to 25 °C, and she will have a supersaturated solution.
B and D are wrong. The most salt that will dissolve at 25 °C is 360 g. She will have a saturated solution.
C is wrong. Only 356 g of salt will dissolve at 5 °C, so that's what Yasmin will have in her solution at 25 °C. She will have a dilute solution.
Answer: Option (B) is the correct answer.
Explanation:
Degree of randomness of the molecules of a substance is known as entropy. More is the kinetic energy between the molecules of a substance more will be the degree of randomness.
Therefore, when a substance is present in a gaseous state then it has the maximum entropy. In liquid state, molecules are closer to each other so, there is less randomness between them.
On the other hand, in solid state molecules are much more closer to each other as they arr held by strong intermolecular forces of attraction. Therefore, they have very less entropy.
- When liquid water is formed from gaseous hydrogen and oxygen molecules then gas is changing into liquid. So, there is decrease in entropy.
- When
decomposes then the reaction will be as follows.
Since, 1 mole is producing 2 moles. This means that degree of randomness is increasing as both the molecules are present in gaseous form.
- In formation of a precipitate, aqueous solution is changing into solid state. Hence, degree of randomness is decreasing.
- Rusting of iron also leads to the formation of solid as it forms
.
Thus, we can conclude that decomposition of
gas to
gas is the process that is expected to have an increase in entropy.