When you heated the can with the bit of water inside and you boiled it over a flame, the water turned to vapor (gas) and the pressure in the inside of the can is different from the pressure on the outside of the can. When you placed the can into a ice water beaker or a container, the can shrunk it's size, decreasing it's mass and density. The can shrunk as a result of the inside pressure being equalized with the outside pressure.
The part where you placed it in the ice bath or container was when the water vapor was forced out of the can.
Answer:
bromine (Br)
Explanation: Iron enters into a reaction with substances of different classes, and interacts with oxygen, carbon, phosphorus, halogens (bromine, iodine, fluorine and chlorine), and also nitrogen. These are not all the reactions of iron – this metal reacts with many elements.
Answer:
False
Explanation:
A double covalent bond means 2 atoms or elements are sharing <u>4</u><u> </u><u>e</u><u>l</u><u>e</u><u>c</u><u>t</u><u>r</u><u>o</u><u>n</u><u>s</u>.
*single covalent bond shares 2 electrons.
The molecular weight of a given compound would simply the
sum of the molar weights of each component.
The molar masses of the elements are:
C = 12 amu
H = 1 amu
N = 14 amu
O = 16 amu
where 1 amu = 1 g / mol
Since there are 6 C, 5 H, 1 N and 2 O, therefore the
total molecular weight is:
molecular weight = 6 (12 amu) + 5 (1 amu) + 1 (14 amu) +
2 (16 amu)
molecular weight = 123 amu
Therefore the molecular weight of nitrobenzene is 123 amu
or which is exactly equivalent to 123 g / mol.