Answer:
The correct answer is due to the difference in pressure inside and outside the bottle.
Explanation:
Liquids have melting and boiling points that depend on pressure and temperature. The pressure inside the bottle is higher than the pressure outside. This causes the melting point to drop, making the liquid freeze at a lower temperature than if it were at atmospheric pressure, and therefore has a lower temperature than it would freeze at atmospheric pressure. When the bottle is uncovered, the liquid becomes an atmospheric pressure, and due to the temperature acquired when the bottle was closed the liquid freezes.
Have a nice day!
Answer:
D & E
Explanation:
I think this is dealing with latent heat and D & E would be the range where you will find solid and liquid phases in equilibrium, cuz it starts as gas at from A to B, B to C is gas and liquid equilibrium, C to D is liquid, D to E solid and liquid, and then E to F is solid.
The reaction rate or rate of reaction is the speed at which a chemical reaction takes place, defined as proportional to the increase in the concentration of a product per unit time and to the decrease in the concentration of a reactant per unit time.
Reactions that happen quickly have a high rate of reaction. For example, the chemical weathering of rocks is a very slow reaction: it has a low rate of reaction. Explosions are very fast reactions: they have a high rate of reaction. Rate of reaction is an example of a compound measure.
<span> When an </span>acid and a base<span> are placed together, they </span>react<span> to neutralize the </span>acid<span> and </span>base<span> properties, producing a salt. The H(+) cation of the </span>acid<span>combines with the OH(-) anion of the </span>base<span> to form water.</span>