Answer:
-6.44 m/s²
Explanation:
Given:
Δx = 60 m
v₀ = 27.8 m/s
v = 0 m/s
Find: a
v² = v₀² + 2aΔx
(0 m/s)² = (27.8 m/s)² + 2a (60 m)
a = -6.44 m/s²
The optimum wavelength is 450 nm because that is the wavelength of maximum absorbance by FeSCN2+(aq)
you should choose a wavelength with maximum absorbance. In this case, you are using the scattered light, not the absorbed light as your signal. So you should avoid wavelengths where there are absorption peaks.
<h3>What is wavelength ?</h3>
A waveform signal that is carried in space or down a wire has a wavelength, which is the separation between two identical places (adjacent crests) in the consecutive cycles. This length is typically defined in wireless systems in metres (m), centimetres (cm), or millimetres (mm) (mm).
- The distance between two waves' crests serves as an illustration of wavelength. When you and another person have the same overall mindset and can easily communicate, that is an example of being on the same wavelength.
Learn more about Wavelength here:
brainly.com/question/10750459
#SPJ4
I think it’s B hope it helps:)
Answer:
I. 0 m/s
II. 20 m/s
III. Part BC
Explanation:
I. Determination of the initial velocity.
From the diagram given above,
The motion of the car starts from the origin. This implies that the car start from rest and as such, the initial velocity of the car is 0 m/s
II. Determination of the maximum velocity attained.
From the diagram given above, we can see clearly that the maximum velocity is 20 m/s.
III. Determination of the part of the graph that represents zero acceleration.
It important that we know the meaning of zero acceleration.
Zero acceleration simply means the car is not accelerating. This can only be true when the car is moving with a constant velocity.
From the graph given above, the car has a constant velocity between B and C.
Therefore, part BC illustrates zero acceleration.
The best and most correct answer among the choices provided by your question is the third choice or number 3.
<span>As an object falls freely toward the earth, the momentum of the object-earth system remains the same.</span>
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!