Answer:
An example for gaining potential energy would be: A glass bottle on the top of a high shelf would have more high potential energy than a glass bottle on the middle or bottom shelf because it has a long way or more farther to fall down or brake.
Explanation:
Remember Potential Energy is the restored energy of an object has.
I hope this helps you!
Answer:
Ca - 63.546 g
2N - 28.014 g
2O3 - 96 g
Ca(NO3)2 = 187.56 g
187.56 g x 0.75 mol = 140.67 g
Explanation:
Hope this helps
Answer:
15.70mg would remain
Explanation:
Partition coefficient is used to extract or purify a solute from a solvent selectively to avoid interference from other substances. For the problem, formula is:
Kp = Concentration 9-fluorenone in ether / Concentration of solute in H₂O
After the solute, 9-fluorenone, is extracted with water, the mass that remains in ether is:
(19mg - X)
<em>Where X is the mass that now is in the aqueous phase</em>
Replacing in Kp formula:
9.5 = (19mg - X) / 5mL / (X /10mL)
0.95X = 19mg - X / 5mL
4.75X = 19 - X
5.75X = 19
X = 19 / 5.75
X = 3.30mg
That means 9-fluorenone that remain in the ether layer is:
19mg - 3.30mg =
<h3>15.70mg would remain</h3>
Answer:
n = 2.208x10¹⁸ photons
Explanation:
The energy of a photon( an elementary particle) is given by the equation:
E = nxhxf
Where n is the number of photons, h is plank constant (6,62x10⁻³⁴ J.s), and f is the frequency. Knowing that the power level is 0.120mW (1.2x10⁻⁴ W), the energy in J, for a time of 78 min (4680 s)
E = 1.2x10⁻⁴x4680 = 0.5616 J
The frequency of a photon is its velocity ( c= 3x10⁸ m/s) divided by its wavelength, which is 780 nm = 780x10⁻⁹ m
f = 3x10⁸/780x10⁻⁹
f = 3.846x10¹⁴ s⁻¹
Then, the number of photons is:
0.5616 = nx6,62x10⁻³⁴x3.846x10¹⁴
n = 2.208x10¹⁸ photons.