Hi there! :)
Reference the diagram below for clarification.
1.
We must begin by knowing the following rules for resistors in series and parallel.
In series:

In parallel:

We can begin solving for the equivalent resistance of the two resistors in parallel using the parallel rules.

Now that we have reduced the parallel resistors to a 'single' resistor, we can add their equivalent resistance with the other resistor in parallel (15 Ohm) using series rules:

2.
We can use Ohm's law to solve for the current in the circuit.

3.
For resistors in series, both resistors receive the SAME current.
Therefore, the 15Ω resistor receives 6A, and the parallel COMBO (not each individual resistor, but the 5Ω equivalent when combined) receives 6A.
In this instance, since both of the resistors in parallel are equal, the current is SPLIT EQUALLY between the two. (Current in parallel ADDS UP). Therefore, an even split between 2 resistors of 6 A is <u>3A for each 10Ω resistor</u>.
4.
Since the 15.0 Ω resistor receives 6A, we can use Ohm's Law to solve for voltage.

Answer:
Mass = 386 kg
Explanation:
<u><em>Density = Mass / Volume</em></u>
Mass = Density × Volume
Where D = 19300 kg/m³ , V = 0.02 m³
<em>Putting the given in the above formula</em>
Mass = 19300 × 0.02
Mass = 386 kg
Explanation:
Let's say right is positive and left is negative.
F₁ = -150 N
F₂ = 220 N
Fnet = F₁ + F₂
Fnet = -150 N + 220 N
Fnet = 70 N
The magnitude of Fnet is 70 N, and since it's positive, the direction is to the right.
And since Fnet isn't 0, the force is unbalanced and the motion is changing.
A car with a velocity of 22 m/s is accelerated at a rate of 1.6
for 6.8s has the final velocity t be 32.88 m/s.
The acceleration means the amount of velocity changing per unit time.
The given data:
initial velocity, u = 22 m/s
time, t = 6.8 s
acceleration, a = 1.6 
We will be using the equation of motion:
v = u + at



The final velocity become 32.88 m/s.
To learn more about Attention here:
https://brainly.in/question/10557838
#SPJ4
Explanation:
Mechanical Advantage (MA)
MA=d1d2=FoutFin ; d1 is the distance of effort, d2 is the distance the object is moved