Answer:
The answer to your question is: 234.7 cans
Explanation:
data
caffeine concentration = 3.55 mg/oz
10.0 g of caffeine is lethal
there are 12 oz of caffeine in a can
Then
3.55 mg ----------------- 1 oz
x mg -----------------12 oz (in a can)
x = 42.6 mg of caffeine in a can
Convert it to grams 42,6 mg = 0.0426 g of caffeine in a can
Finally
0.0426 g of caffeine ------------------ 1 can
10 g of caffeine ----------------- x
x = 10 x 1/0.0436 = 234.7 cans
Answer:
-1 Coulomb meter = -2.997 × 10²⁹ Debye
Explanation:
Given:
Coulomb meter = -1 CM
Find:
In debye
Computation:
We know that,
1 Coulomb meter = 299,792,458,178,090,000,000,000,000,000 Debye
So,
-1 Coulomb meter = -299,792,458,178,090,000,000,000,000,000 Debye
-1 Coulomb meter = -2.997 × 10²⁹ Debye
Answer:
Explanation:
Proteins are a class of macromolecules that perform a diverse range of functions for the cell. They help in metabolism by providing structural support and by acting as enzymes, carriers, or hormones. The building blocks of proteins (monomers) are amino acids.
Answer: (3) The difference in electronegativity between carbon and oxygen is greater than that between fluorine and oxygen.
Explanation: Polarity of a molecule is due to the difference in electronegativity of the atoms. More is the electronegativity difference, more is the polarity.
Electronegativity of carbon = 2.5
Electronegativity of oxygen = 3.5
Electronegativity of fluorine = 4.0
Thus the difference in electronegativity of carbon and oxygen is=(3.5-2.5)= 1.0
Thus the difference in electronegativity of fluorine and oxygen is=(4.0-3.5)= 0.5.
Thus C-O bond is more polar than F-O bond.
Answer:
The reaction that is used to join fatty acid and glycerol is known as Lipogenesis.
Explanation:
Lipogenesis is an important anabolic pathway that helps in the biosynthesis of triacylglycerol by joining glycerol with fatty acid by ester linkage.Lipogenesis occur in liver and adipose tissue .
Lipogenesis takes place in our body to store excess fatty acid in form of triacylglycerol which is a complex lipid molecule.