Explanation:
Electric charge is the physical property of matter that causes it to experience a force when placed in an electromagnetic field. ... Electric charge is carried by subatomic particles. In ordinary matter, negativecharge is carried by electrons, and positive charge is carried by the protons in the nuclei of atoms.
Electric charge is the physical property of matter that causes it to experience a force when placed in an electromagnetic field. There are two types of electric charge: positive and negative (commonly carried by protons and electrons respectively). Like charges repel and unlike attract. An object with an absence of net charge is referred to as neutral. Early knowledge of how charged substances interact is now called classical electrodynamics, and is still accurate for problems that do not require consideration of quantum effects.
Answer:
NH^4NO^3
Explanation:
Ammonium nitrate, (NH4NO3), a salt of ammonia and nitric acid, used widely in fertilizers and explosives.
Answer:
16 minutes
Explanation:
First, we need to calculate the amount of heat needed to cool the beef stew:
Q = mcΔT
Where <em>m</em> is the mass, <em>c</em> is the heat capacity and <em>ΔT</em> is the variation of the temperature.
Q = 10x4x(40 - 90)
Q = -2000 kJ
So, the beef stew needs to lost 2000 kJ to cool.
With the initial temperature at 90ºC, the rate of cooling(r) will be:
r = 1.955x(90 - 25)
r = 127.075 kJ/min
So, to lose 2000 kJ, will be necessary:
t = Q/r
t = 2000/127.075
t = 16 minutes
Answer:
A.................. I think the answer
Answer:
0.50 g Caffeine
Explanation:
Step 1: Given data
Concentration of caffeine by weight in tea leaves: 5.0%
Mass of tea leaves: 10. g
Step 2: Calculate the maximum weight of caffeine that can be isolated
The concentration of caffeine by weight in tea leaves is 5.0%, that is, there are 5.0 g of caffeine per 100 g of tea leaves. The maximum weight of caffeine in 10. g of tea leaves is:
10. g Tea leaves × 5.0 g Caffeine/100 g Tea leaves = 0.50 g Caffeine