Answer:
187.34 atm
Explanation:
From the question,
PV = nRT.................. Equation 1
Where P = Pressure, V = Volume, n = number of mole, R = molar gas constant, T = Temperature.
make P the subject of the equation
P = nRT/V.............. Equation 2
n = mass(m)/molar mass(m')
n = m/m'............... Equation 3
Substitute equation 3 into equation 2
P = (m/m')RT/V............ Equation 4
Given: m = 46 g, T = 25°C = (25+273) = 298 K, V = 3.00 L
Constant: m' = 2 g/mol, R = 0.082 atmL/K.mol
Substitute these values into equation 4
P = (46/2)(0.082×298)/3
P = (23×0.082×298)/3
P = 187.34 atm
Answer:
Explanation:
The modern model recognizes particles in the atom, whereas Dalton's model does not.
Answer:
3 P atoms
Explanation:
Al₂P₃ => contains 2 Aluminum ions (2Al⁺³) and 3 Phosphide ions (3P⁻³) ... The ions (charged particles) are from atoms that have lost or gained electrons during the bonding process. So, Al₂P₃ => P⁻³ ions from 3 P atoms.
Answer:
its a trick yo have to add it all
Explanation:
Answer:
w = 164.62 g
Explanation:
molarity of a solution is given as -
Molarity (M) = ( w / m ) / V ( in L)
where ,
m = molecular mass ,
w = given mass ,
V = volume of solution ,
From the question ,
M = 500 mM = 0.5 M
( since , 1 mM = 1 / 100 M)
As we know , the molecular mass of potassium ferricyanide = 329.24 g/ mol
V = vol.of solution = 1 L
w = ?
<u>To find the value of w , using the above formula , and putting the respected values , </u>
Molarity (M) = ( w / m ) / V ( in L)
0.5 = ( w / 329.24 ) / 1 L
w = 164.62 g