Answer:
B: increase.
Explanation:
When we are considering two gases A and B in a container at room temperature .
We have to find the change on rate of reaction when the number of molecules of gases A is doubled
Let [A]=a and [B]=b
A+B
product
Rate of reaction
![R_1=k[A][B]=kab](https://tex.z-dn.net/?f=R_1%3Dk%5BA%5D%5BB%5D%3Dkab)
We know that concentration is increases with increase in number of moles
When the number of molecules of gases A is doubled then concentration of gases A increases.
Therefore ,[A]=2a
Rate of reaction


Hence, the rate of reaction is 2 times the initial rate of reaction.Therefore, the rate of reaction will increase when the number of molecules of gases A is doubled.
Answer: B: increase.
Answer:
isolated system (plural isolated systems) (physics) A system that does not interact with its surroundings. Depending on context this may mean that its total energy and/or momentum stay constant.
Explanation:
An isolated system is a thermodynamic system that cannot exchange either energy or matter outside the boundaries of the system. ... The system may be enclosed such that neither energy nor mass may enter or exit.
is there both?
Answer:
![[Pb^{2+}]=3.9 \times 10^{-2}M](https://tex.z-dn.net/?f=%5BPb%5E%7B2%2B%7D%5D%3D3.9%20%5Ctimes%2010%5E%7B-2%7DM)
this is the concentration required to initiate precipitation
Explanation:
⇄
Precipitation starts when ionic product is greater than solubility product.
Ip>Ksp
Precipitation starts only when solution is supersaturated because solution become supersaturated then it does not stay in this form and precipitation starts itself only solution become saturated.
This usually happens when two solutions containing separate sources of cation and anion are mixed together and here also we are mixing lead (||)nitrate solution(source of lead(||)) into the Cl- solution.
![Ip=[Pb^{2}][2Cl^-]^2=Ksp](https://tex.z-dn.net/?f=Ip%3D%5BPb%5E%7B2%7D%5D%5B2Cl%5E-%5D%5E2%3DKsp)

lets solubility=S
![[Pb^{2+}] = S](https://tex.z-dn.net/?f=%5BPb%5E%7B2%2B%7D%5D%20%3D%20S)
![[Cl^-]=2S](https://tex.z-dn.net/?f=%5BCl%5E-%5D%3D2S)
![Ksp=[Pb^{2+}]\times [Cl^-]^2](https://tex.z-dn.net/?f=Ksp%3D%5BPb%5E%7B2%2B%7D%5D%5Ctimes%20%5BCl%5E-%5D%5E2)


![S=\sqrt[3]{\frac{Ksp}{4} }](https://tex.z-dn.net/?f=S%3D%5Csqrt%5B3%5D%7B%5Cfrac%7BKsp%7D%7B4%7D%20%7D)

this is the concentration required to initiate precipitation
Answer:
+1
Explanation:
Electrochemistry. In oxidation–reduction (redox) reactions, electrons are transferred from one A redox reaction is balanced when the number of electrons lost by the reductant Hg(l)∣Hg2Cl2(s)∣Cl−(aq) ∥ Cd2+(aq)∣Cd(s).
As is evident from the Stock number, mercury has an oxidation state of +1. This makes sense, as chlorine usually has an oxidation state of -1.
Answer:
Anything that can be done to increase the frequency of those collisions and/or to give those collisions more energy will increase the rate of dissolving.
Explanation:
depended on the temperature