Answer is: pH value of solution of NaC₂H₃O₂ is 9.07.
Chemical reaction: C₂H₃O₂⁻ + H₂O ⇄ HC₂H₃O₂ + OH⁻.
Ka(HC₂H₃O₂) = 1,8·10⁻⁵.<span>
Ka · Kb = Kw.
</span>1,8·10⁻⁵ mol/dm³ · Kb = 1·10⁻¹⁴ mol²/dm⁶; the ionic product of water at 25°C.<span>
Kb(</span>C₂H₃O₂⁻)
= 1·10⁻¹⁴ mol²/dm⁶ ÷ 1,8·10⁻⁵ mol/dm³.<span>
Kb(</span>C₂H₃O₂⁻) =
5,56·10⁻¹⁰ mol/dm³.
c(C₂H₃O₂⁻) = 0,25 M.
[OH⁻] = [HC₂H₃O₂] = x.
[C₂H₃O₂⁻] = 0,25 M - x.
Kb = [OH⁻] · [HC₂H₃O₂] / [C₂H₃O₂⁻].
5,56·10⁻¹⁰ = x² / (0,25 M -x).
Solve quadratic equation: x = [OH⁻] = 0,0000118 M.
pOH = -log[OH⁻] = -log(0,0000118M) = 4,93.
pH + pOH = 14.
pH = 14 - 4,93 = 9,07.
Answer:
About 0.1738 liters
Explanation:
Using the formula PV=nRT, where p represents pressure in atmospheres, v represents volume in liters, n represents the number of moles of ideal gas, R represents the ideal gas constant, and T represents the temperature in kelvin, you can solve this problem. But first, you need to convert to the proper units. 215ml=0.215L, 86.4kPa is about 0.8527 atmospheres, and 15C is 288K. Plugging this into the equation, you get:

Now that you know the number of moles of gas, you can plug back into the equation with STP conditions:

Hope this helps!
Answer:
Na2O+H2O=2NaOH
Step by step exp.
Given:
Equation Na2O+H2O=NaOH
To find: Balance the equation
Solution:
Taking LHS of the equation
LHS=Na2O+H2O
There is 2 sodium, 2 oxygen,& 2 hydrogen
To balance the equation we have equal number of atom so we multply 2 to the RHS=2NaOH
There fore the equation form is
Na2O+H2O=2NaOH
Answer:
We need 3910.5 joules of energy
Explanation:
Step 1: Data given
Mass of aluminium = 110 grams
Initial temperature = 52.0 °C
Final temperature = 91.5 °C
Specific heat of aluminium = 0.900 J/g°C
Step 2: Calculate energy required
Q = m*c*ΔT
⇒with Q = the energy required = TO BE DETERMINED
⇒with m = the mass of aluminium = 110 grams
⇒with c = the specific heat of aluminium = 0.900 J/g°C
⇒with ΔT = the change in temperature = T2 - T1 = 91.5 °C - 52.0 °C = 39.5 °C
Q = 110 grams * 0.900 J/g°C * 39.5
Q = 3910.5 J
We need 3910.5 joules of energy
Answer:
2) Add a solution of NaBr
Explanation:
Lead (II) bromide is an inorganic powdery substance that has a solubility in water of 0.973 g/100 mL at 20°C. It is insoluble in alcohol but is soluble in alkali, ammonia, NaBr, and KBr
PbBr₂ is slightly soluble in ammonia, and it reacts with NaOH to produce Pb(OH)₂ and NaBr
Therefore, the best solution for dissolving PbBr₂(s) is NaBr