Answer:
3.49 g
Explanation:
The mass is the product of volume and density:
(8.96 g/cm³)(0.39 cm³) ≈ 3.49 g
The mass of a pure-copper penny would be 3.49 g.
Answer:
a) a space in an atom where an electron is most likely to be found
Explanation:
Atomic orbital is the mathematical function which describes wave-like behavior of the electrons present in the atom.
It is used to calculate probability of finding the electron of the atom in any region around nucleus of the atom. Atomic orbital is the physical region or a three dimensional space where the probability of finding the electron is more than 90% which also means that the space where an electron is most likely to be found. They are boundless space and have definite energy.
Option A best describes atomic orbital.
Answer:
513.74 g of solution
Explanation:
% Mass grams are defined as the <em>grams that are dissolved in salt</em> (in this case, it would be <em>potassium nitrate</em>) <em>dissolved every 100 g of the solution</em>. Having this information, you can calculate the amount of solution that has dissolved 18.7 g of potassium nitrate, which is what we want to obtain.
The relationship is:
3.64 g of potassium nitrate _____ 100 g solution
18.7 g of potassium nitrate _____ X = 513.74 g of solution
Calculation: 18.7g x 100g / 3.64g = 513.74 g of solution
So, <em>I need 513.74 g of solution to get 18.7g of potassium nitrate by evaporating it</em>.
Answer:
B) Gamma
Explanation:
Gamma is by far the most powerful, and only one that can produce this much energy
Answer:
- In general, polar solutes are most soluble in highly polar solvents.
Explanation:
The general rule is "like dissolves like" which means that <em>polar solvents </em>dissolve polar (or ionic) <em>solutes</em> and <em>non-polar solvents</em> dissolve non-polar solutes.
In order for a solvent dissolve a solute, the strength of the interacttion (force) between the solute and the solvent units (atoms, molecules, or ions) must be stronger than the strength of the forces that keep together he particles of the pure substances (known as intermolecular forces).
Since the nature of the interactions between the units are electrostatic, the more polar is the solvent the better it will be able to attract and surround the solute particles, keeping them separated and in solution. That mechanism explains why polar solutes will be most soluble in highly polar solvents.