1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kirill [66]
3 years ago
14

A resistor has a resistance of 50 Ohms. If a 9V battery is connected to it, how much current flows in the wire?

Physics
1 answer:
Ksju [112]3 years ago
7 0

Answer:

0.18 amperes

Explanation:

V = 9

R = 50 ohms

I =  ?

Formula

V = I * R

Solution

9 = I * 50           Divide by 50. Switch

I = 9 / 50

I = 0.18 amperes.

If you know what a milliampere is then it is 180 ma which is very large for a 9 volt battery to handle

You might be interested in
Assume that a pendulum used to drive a grandfather clock has a length L0=1.00m and a mass M at temperature T=20.00°C. It can be
Sedaia [141]

Answer:

The period will change a 0,036 % relative to its initial state

Explanation:

When the rod expands by heat its moment of inertia increases, but since there was no applied rotational force to the pendulum , the angular momentum remains constant. In other words:

ζ= Δ(Iω)/Δt, where ζ is the applied torque, I is moment of inertia, ω is angular velocity and t is time.

since there was no torque ( no rotational force applied)

ζ=0 → Δ(Iω)=0 → I₂ω₂ -I₁ω₁ = 0 → I₁ω₁ = I₂ω₂

thus

I₂/I₁ =ω₁/ω₂ , (2) represents final state and (1) initial state

we know also that ω=2π/T , where T is the period of the pendulum

I₂/I₁ =ω₁/ω₂ = (2π/T₁)/(2π/T₂)= T₂/T₁

Therefore to calculate the change in the period we have to calculate the moments of inertia. Looking at tables, can be found that the moment of inertia of a rod that rotates around an end is

I = 1/3 ML²

Therefore since the mass M is the same before and after the expansion

I₁ = 1/3 ML₁² , I₂ = 1/3 ML₂²  → I₂/I₁ = (1/3 ML₂²)/(1/3 ML₁²)= L₂²/L₁²= (L₂/L₁)²

since

L₂= L₁ (1+αΔT) , L₂/L₁=1+αΔT  , where ΔT is the change in temperature

now putting all together

T₂/T₁=I₂/I₁=(L₂/L₁)² = (1+αΔT) ²

finally

%change in period =(T₂-T₁)/T₁ = T₂/T₁ - 1 = (1+αΔT) ² -1

%change in period =(1+αΔT) ² -1 =[ 1+18×10⁻⁶ °C⁻¹ *10 °C]² -1 = 3,6 ×10⁻⁴ = 3,6 ×10⁻² %  = 0,036 %

4 0
3 years ago
Your bedroom gets direct sunlight through a window during the hottest part of the day. You ask your mom to turn down the thermom
ycow [4]
I want to say its cooled by reflection because of the foil, sun reflects off of the foil back into the atmosphere. I don't think it's conduction because I have the foil on my windows and it's never warm to the touch. it's not a liquid so I don't believe it's convection. The foil reflects the radiation so I don't think it's b, c or d. so I wanna say A but I'm not 100% sure
6 0
3 years ago
A ball is shot from the ground into the air. At a height of 8.8 m, the velocity is observed to be
Mariulka [41]

Answer:

h = 10.4 m

R = 22.48 m

v= 16,2 m/s , α = 61.7°, below the horizontal

v = (7.7)i + (-14.3)j in meters per second (i horizontal, j downward)

Explanation:

The ball describes a parabolic path, and the equations of the movement are:

Equation of the uniform rectilinear motion (horizontal ) :

x = vx*t  :

Equations of the uniformly accelerated rectilinear motion of upward   (vertical ).

y = (v₀y)*t - (1/2)*g*t² Equation (2)

vfy² = v₀y² -2gy Equation (3)

vfy = v₀y -gt Equation (4)

Where:  

x: horizontal position in meters (m)

t : time (s)

vx: horizontal velocity  in m  

y: vertical position in meters (m)  

v₀y: initial  vertical velocity  in m/s  

vfy: final  vertical velocity  in m/s  

g: acceleration due to gravity in m/s²

Known data

y= 8.8 m

v = ( (7.7)i + (5.7)j  ) m/s : vx= 7.7 m/s , vy= 5.7 m/s

g = 9.8 m/s²

Calculation of the  initial  vertical velocity ( v₀y)

We apply Equation (3) with the known data

(vfy)² = (v₀y)² -2*g*y

(5.7)² = (v₀y)²- (2)*(9.8)*(8.8)

(5.7)²+ 172.48 =  (v₀y)²

v_{oy} = \sqrt{(5.7)^{2}+ 172.48 }

v₀y = 14.3 m/s

Calculation of the maximum height  the ball rise (h)

In the maximum height vfy=0

We apply the Equation (3) :

(vfy)² = (v₀y)² -2*g*y

0 = (14.3)² - 2*98*h

h = (14.3)² / 19.6

h = 10.4 m

Calculation of the time it takes for the ball to the maximum height

We apply the Equation (4) :

vfy = v₀y -gt

0 = v₀y -gt

gt = v₀y

t = v₀y/g

t = 14.3/9.8

t= 1.46 s

Flight time = 2t = 2.92 s

Total horizontal distance traveled by the ball  (R)

We replace data in the equation (1)

x =vx*t    vx= 7.7 m/s , t =2.92 s  (Flight time)

R = (7.7)* (2.92) = 22.48 m

Velocity of the ball (magnitude (v) and direction (α)) the instant before it hits the ground

vx = 7.7 m/s

vy = v₀y -gt = 14.3 - 9.8* (2.92) = -14.3 m/s

v= \sqrt{v_{x}^{2}+v_{y}^{2}  }

v= \sqrt{(7.7)^{2}+ (-14.3)^{2}  }

v= 16,2 m/s

\alpha = tan^{-1} (\frac{v_{y} }{v_{x} })

\alpha = tan^{-1} (\frac{-14.3 }{7.7 })

α = -61.7°

α = 61.7°, below the horizontal

i- j components of the v

v = (7.7)i + (-14.3)j in meters per second (i horizontal, j downward)

5 0
3 years ago
Holding onto a tow rope moving parallel to a frictionless ski slope, a 68.7 kg skier is pulled up the slope, which is at an angl
Furkat [3]

Answer:

a) F = 78.606\,N, b) F = 88.911\,N

Explanation:

a) Let consider two equations of equilibrium, the first parallel to ski slope and the second perpendicular to that. The equations are, respectively:

\Sigma F_{x'} = F - m\cdot g \cdot \sin \theta = 0\\\Sigma F_{y'} = N - m\cdot g \cdot \cos \theta = 0

The force on the skier is:

F = m \cdot g \cdot \sin \theta

F = (68.7\,kg)\cdot (9.807\,\frac{m}{s^{2}} )\cdot \sin 6.7^{\textdegree}

F = 78.606\,N

b) The equations of equilibrium are the following:

\Sigma F_{x'} = F - m\cdot g \cdot \sin \theta = m\cdot a\\\Sigma F_{y'} = N - m\cdot g \cdot \cos \theta = 0

The force on the skier is:

F = m\cdot (a + g \cdot \sin \theta)

F = (68.7\,kg)\cdot (0.150\,\frac{m}{s^{2}}+9.807\,\frac{m}{s^{2}}\cdot \sin 6.7^{\textdegree})

F = 88.911\,N

3 0
3 years ago
An elastic conducting material is stretched into a circular loop of 9.65 cm radius. It is placed with its plane perpendicular to
Nadya [2.5K]

Answer:

The induced emf in the coil is 0.522 volts.                        

Explanation:

Given that,

Radius of the circular loop, r = 9.65 cm

It is placed with its plane perpendicular to a uniform 1.14 T magnetic field.

The radius of the loop starts to shrink at an instantaneous rate of 75.6 cm/s , \dfrac{dr}{dt}=-0.756\ m/s

Due to the shrinking of radius of the loop, an emf induced in it. It is given by :

\epsilon=\dfrac{-d\phi}{dt}\\\\\epsilon=\dfrac{-d(BA)}{dt}\\\\\epsilon=B\dfrac{-d(\pi r^2)}{dt}\\\\\epsilon=2\pi rB\dfrac{dr}{dt}\\\\\epsilon=2\pi \times 9.65\times 10^{-2}\times 1.14\times 0.756\\\\\epsilon=0.522\ V

So, the induced emf in the coil is 0.522 volts.                                

8 0
3 years ago
Other questions:
  • How much heat energy is required to raise the temperature of 5 kilograms of coal from 20°C to 220°C? A. 314 J B. 6,573 J C. 1,31
    10·2 answers
  • Which kind of pressure prevents stars of extremely large mass from forming?
    15·2 answers
  • How high is the average telephone pole
    9·2 answers
  • A scientist who conducted an experiment obtained an unexpected result. What will she most likely do with the unexpected result?
    15·1 answer
  • Một điện tích q = 6.10-6 C đặt tại tâm của một hình lập phương. Tính thông lượng điện trường gửi qua mỗi mặt hình lập phương.
    14·1 answer
  • Describe three possible careers in physical science
    9·1 answer
  • A car traveling at 65 mph is an example of its
    15·1 answer
  • A vector has a magnitude of 30m at an angle of 225 degrees with respect to the positive x-axis and has a magnitude of 13m.what a
    9·1 answer
  • Which of Newton's Laws does this represent? Support your choice.
    14·2 answers
  • Explain why convex mirrors can only produce virtual images. Please use at least 2 content related sentences. (ref: p.471-481)
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!