1) Chemical equation
<span>2NH4Cl(s)+Ba(OH)2⋅8H2O(s)→2NH3(aq)+BaCl2(aq)+10H2O(l)
2) Stoichiometric ratios
2 mol NH4Cl(s) : 54.8 KJ
3) Convert 24.7 g of NH4Cl into number of moles, using the molar mass
molar mass of NH4Cl = 14 g/mol + 4*1 g/mol + 35.5 g/mol = 53.5 g/mol
number of moles = mass in grams / molar mass
number of moles = 24.7 g / 53.5 g/mol = 0.462 moles
4) Use proportions:
2 moles NH4Cl / 54.8 kJ = 0.462 moles / x
=> x = 0.462 moles * 54.8 kJ / 2 moles = 12.7 kJ
Answer: 12.7 kJ
</span>
When NAD becomes NADH, it is being reduced and gaining chemical energy.
Nicotinamide adenine dinucleotide (NAD), a coenzyme, can exist in two forms, NAD⁺ (oxidized) and NADH (reduced form).
Electrons and protons released in catabolism reactions are attached to NAD⁺. The conversion of NAD⁺ to NADH is important reaction for production of ATP during the cellular respiration.
Reduction is lowering oxidation number because element, ion or compound gain electrons.
Chemical equation for reaction of reduction of NAD⁺ (see picture below):
NAD⁺ + 2e⁻ + H⁺ → NADH
Nicotinamide adenine dinucleotide (NAD) is made of two nucleosides joined by pyrophosphate.
More about reduction :brainly.com/question/25334331
#SPJ4
Answer:
Likely the reason behind carrying them in liquid for is to condense them. liquid takes up far less space than gases do and will last far longer. they can be transformed back into gases through heating them back up. To keep them solid would require frigid temperatures but liquid will transfer more easily through space.
Q = mC∆T
<span>where: </span>
<span>q = heat </span>
<span>m = mass of substance = 35.0 grams </span>
<span>C = 0.385 J/g*C </span>
<span>∆T = change in temperature = 65C - 20C = 45C </span>
<span>q = (35.0 g)*(0.385 J/g*C)*(45C) = 606 J </span>