Answer:
is larger
Explanation:
, where
is the acid dissociation constant.
For a monoprotic acid e.g. HA,
and ![\frac{[A^{-}]}{[HA]}=\frac{K_{a}}{[H^{+}]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA%5E%7B-%7D%5D%7D%7B%5BHA%5D%7D%3D%5Cfrac%7BK_%7Ba%7D%7D%7B%5BH%5E%7B%2B%7D%5D%7D)
So, clearly, higher the
value , lower will the the
In this mixture, at equilibrium,
will be constant.
of HF is grater than
of HCN
Hence, ![(\frac{F^{-}}{[HF]}=\frac{K_{a}(HF)}{[H^{+}]})>(\frac{CN^{-}}{[HCN]}=\frac{K_{a}(HCN)}{[H^{+}]})](https://tex.z-dn.net/?f=%28%5Cfrac%7BF%5E%7B-%7D%7D%7B%5BHF%5D%7D%3D%5Cfrac%7BK_%7Ba%7D%28HF%29%7D%7B%5BH%5E%7B%2B%7D%5D%7D%29%3E%28%5Cfrac%7BCN%5E%7B-%7D%7D%7B%5BHCN%5D%7D%3D%5Cfrac%7BK_%7Ba%7D%28HCN%29%7D%7B%5BH%5E%7B%2B%7D%5D%7D%29)
So,
is larger
Answer:
We know that
ħf = ф + Ekmax
where
ħ = planks constant = 6.626x10^-34 J s
f = frequency of incident light = 1.3x10^15 /s (1 Hz =
1/s)
ф = work function of the cesium = 2.14 eV
Ekmax = max kinetic energy of the emmitted electron.
We distinguish that:
1 eV = 1.602x10^-19 J
So:
2.14 eV x (1.602x10^-19 J / 1 eV) = 3.428x10^-19 J
So,
Ekmax = (6.626x10^-34 J s) x (1.3x10^15 / s) - 3.428x10^-19 J
= 8.6138x10^-19 J - 3.428x10^-19 J = 5.1858x10^-19 J
Answer:
5.19x10^-19 J
Kinetic energy:
In physics, the kinetic energy of an object is the energy that it owns due to its motion. It is defined as the work required accelerating a body of a given mass from rest to its specified velocity. Having expanded this energy during its acceleration, the body upholds this kinetic energy lest its speed changes.
Answer details:
Subject: Chemistry
Level: College
Keywords:
• Energy
• Kinetic energy
• Kinetic energy of emitted electrons
Learn more to evaluate:
brainly.com/question/4997492
brainly.com/question/4010464
brainly.com/question/1754173
Answer:
increasing the number of molecules that have sufficient kinetic energy to react.
Explanation:
An increase in temperature affects the reaction rate by increasing the number of molecules that have sufficient kinetic energy to react.
or we say; temperature increase, leads to an increase in the amount of collisions between molecules.
Answer:
112 mL
Explanation:
The formula for percent by volume is

If you have 250 mL of a solution that is 44.8 % v/v,
