Answer:
a) 3-in. pipe
Explanation:
Given that
Fluid flow is in same amount in the same time it means that volume flow rate is same for the pipes
Volume flow rate
Q = A V
A=Area ,V=Velocity

If diameter d is more then the velocity will be less for same volume flow rate .We also Know that if pressure is more then the velocity will be less.
The second pipe 3 in diameter having more diameter then the velocity will be less but the pressure will be more.
That is why the 3 in diameter is having more pressure than 2 in diameter pipe.
Therefore the answer will be a.
a) 3-in diameter pipe
Answer:
Describing a Force:
To fully describe the force acting upon an object, you must describe both its magnitude and direction. Thus, 10 Newtons of force is not a complete description of the force acting on an object. 10 Newtons, downwards is a complete description of the force acting upon an object.
Explanation:
Answer:
A) - 1.8 m/s
Explanation:
As we know that whole system is initially at rest and there is no external force on this system
So total momentum of the system must be conserved
so we will have

now plug in all data into above equation



so correct answer is
A) - 1.8 m/s
It's just asking you to sit down and COUNT the little squares in each sector.
It'll help you keep everything straight if you take a very sharp pencil and make a tiny dot in each square as you count it. That way, you'll be able to see which ones you haven't counted yet, and also you won't count a square twice when you see that it already has a dot in it.
(If, by some chance, this is a picture of the orbit of a planet revolving around the sun ... as I think it might be ... then you should find that both sectors jhave the same number of squares.)
Kinetic energy = (1/2) (mass) (speed)²
= (1/2) (1.4 kg) (22.5 m/s)²
= (0.7 kg) (506.25 m²/s² )
= 354.375 kg-m²/s² = 354.375 joules .
This is just the kinetic energy associated with a 1.4-kg glob of
mass sailing through space at 22.5 m/s. In the case of a frisbee,
it's also spinning, and there's some additional kinetic energy stored
in the spin.