Answer:
Potential difference = 6.0 V
I for 1.0Ω = 6 A
I for 2.0Ω = 3 A
I for 3.0Ω = 2 A
Explanation:
Potential difference (ΔV) = Current (I) x Resistance (R)
The potential difference is constant and equals 6.0 V, hence;
I = ΔV/R
When R = 1.0, I =6/1 = 6 amperes
When R = 2.0, I = 6/2 = 3 amperes
When R = 3.0, I = 6/3 = 2 amperes
<em>The potential difference is 6.0 V and the current is 6, 3, and 2 amperes for a resistance of 1.0, 2.0 and 3.0Ω respectively.</em>
Answer:
19.5°
Explanation:
The energy of the mass must be conserved. The energy is given by:
1) 
where m is the mass, v is the velocity and h is the hight of the mass.
Let the height at the lowest point of the be h=0, the energy of the mass will be:
2) 
The energy when the mass comes to a stop will be:
3) 
Setting equations 2 and 3 equal and solving for height h will give:
4) 
The angle ∅ of the string with the vertical with the mass at the highest point will be given by:
5) 
where l is the lenght of the string.
Combining equations 4 and 5 and solving for ∅:
6) 
Answer:
The answer should be <u>WORK </u>
<em>(Hope this Helps)</em>
Explanation:
work is equal to the product of force and distance.
W=F*S
W=Work
F=Force applied
S=Distance
This depends on the original mass of the object having its mass doubled and the the original distance before the distance was tripled.
Answer:
The force is 15N
Explanation:
The formula is Force= mass × velocity.
From the question mass is 5kg, velocity is 3m/s.
F= 5×3
F= 15Newton.
Therefore the force is 15N.