Given
Weight of the block A, Wa = 20 lb, weight of block B Wb = 50 lb. Applied
force to block A, P = 6lb, coefficient of static friction µs = 0.4, coefficient
of kinetic friction µk = 0.3. If a force P
is applied to the body, no relative motion will take place until the applied
force is equal to the force of friction Ff, which is acting opposite to the
direction of motion. Magnitude of static force of friction between block A and
block B, Fs = µsN, where N is
reaction force acting on block A. Now, resolve the forces Fx = max. P = (mA +
mB)a,
6 = (20 / 32.2 + 50 / 32.2)a
2.173a = 6
A = 2.76 ft/s^2
To check slipping occurs between block A and block B, consider block A:
P – Ff = mAaA
6 – Ff = 1.71
Ff = 4.29 lb
And also,
N = wA. We know static friction,
Fs = µsN
Fs = 0.4 x 20
Fs = 8lb
Frictional force is less than static friction. Ff < Fs
<span>Therefors, acceleration of block A, aA = 2.76 ft/s^2, acceleration of
block B aB = 2.76 ft/s^2</span>
Answer:
Explanation:
For the first case , the expression for electrostatic force can be given by the following .
F = K x 8Q x 2Q / r² where k is a constant .
F = K 16 Q² / r²
When they touch , some charge is neutralized . Net charge remaining
= 8Q - 2 Q = 6 Q
Charge on each sphere = 6Q/2 = 3 Q .
Force between them
F₁ = k 3Q x 3 Q / r² = k 9 Q² / r²
F₁ / F = 9 / 16
F₁ = 9 F / 16 .
Answer:
The deceleration is
Explanation:
From the question we are told that
The distance of the car from the crossing is
The speed is
The reaction time of the engineer is
Generally the distance covered during the reaction time is
=>
=>
Generally distance of the car from the crossing after the engineer reacts is
=>
=>
Generally from kinematic equation
Here v is the final velocity of the car which is 0 m/s
So
=>
if spring constant is doubled, the mass on spring will be doubled as well. according to this formula, F=ke
k stands for spring constant and e stands for the length extended
What is the kinetic energy of the system after the collision?
How this is calculated?
Given:
Initial speed=
mass of rod=M
Let, Initial kinetic energy =
Final kinetic energy=
Moment of inertia =I
What is the moment of inertia?
What is the angular momentum?
By conservation of angular momentum,
We know that, the final kinetic energy is given by,
What is the kinetic energy?
- In physics, the kinetic energy of an object is the energy that it possesses due to its motion.
- It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity.
- Having gained this energy during its acceleration, the body maintains this kinetic energy unless its speed changes.
To know more about kinetic energy, refer:
brainly.com/question/114210
#SPJ4