Answer: at night when the full moon is there the tide begans to appear higher
Explanation:
Given:
• Mass, m = 0.200 mg
,
• Speed, v = 3.00 x 10³ m/s
,
• Time, t = 6.00 x 10^⁻⁸ s.
Let's calculate the force exerted.
Using the inpulse-momentum theroerm, we have:
impulse = change in momemntum
Where:
Impulse = force x time
change in momentum = mass x velocity.
Thus, we have:

Let's solve for the force F:

Therefore, the force exterted is 10000 N.
ANSWER:'
10000 N
Answer: a switch can do A, B and E
Explanation:
Writing the acceleration as a function of time:
a(t) = 1 + 3√t
Integrating acceleration, we obtain velocity:
v(t) = t + 2(t)^(3/2) + c;
object at rest so velocity at t = 0 is 0 so c = 0.
v(t) = t + 2(t)^(3/2)
Integrating velocity to obtain an equation for displacement:
d(t) = t²/2 + 4/5 t^(5/2) + c
Applying limits from t = 0 to t = 9
d = 9²/2 + 4/5 9^(5/2)
d = 234.9 m
Answer:
d = 6.43 cm
Explanation:
Given:
- Speed resistance coefficient in silicon n = 3.50
- Memory takes processing time t_p = 0.50 ns
- Information is to be obtained within T = 2.0 ns
Find:
- What is the maximum distance the memory unit can be from the central processing unit?
Solution:
- The amount of time taken for information pulse to travel to memory unit:
t_m = T - t_p
t_m = 2.0 - 0.5 = 1.5 ns
- We will use a basic relationship for distance traveled with respect to speed of light and time:
d = V*t_m
- Where speed of light in silicon medium is given by:
V = c / n
- Hence, d = c*t_m / n
-Evaluate: d = 3*10^8*1.5*10^-9 / 3.50
d = 0.129 m 12.9 cm
- The above is the distance for pulse going to and fro the memory and central unit. So the distance between the two is actually d / 2 = 6.43 cm