The vector c has a magnitude of 24.6m and it is in the negative y direction. Therefore

The vector b is 41.4° up from the x-axis. Therefore
![\vec{b} = b[cos(41.4^{o}) \hat{i} + sin(41.4^{o}) \hat{j} ] =b(0.75\hat{i} + 0.6613 \hat{j})](https://tex.z-dn.net/?f=%5Cvec%7Bb%7D%20%3D%20b%5Bcos%2841.4%5E%7Bo%7D%29%20%5Chat%7Bi%7D%20%2B%20sin%2841.4%5E%7Bo%7D%29%20%5Chat%7Bj%7D%20%5D%20%3Db%280.75%5Chat%7Bi%7D%20%2B%200.6613%20%5Chat%7Bj%7D%29)
The vector a is 27.7° up from the x-axis. Therefore
![\vec{a} = a[cos(22.7^{o})\hat{i} + sin(27.7^{o})\hat{j}] = a(0.8854\hat{i} + 0.4648\hat{j})](https://tex.z-dn.net/?f=%5Cvec%7Ba%7D%20%3D%20a%5Bcos%2822.7%5E%7Bo%7D%29%5Chat%7Bi%7D%20%2B%20sin%2827.7%5E%7Bo%7D%29%5Chat%7Bj%7D%5D%20%3D%20%20a%280.8854%5Chat%7Bi%7D%20%2B%200.4648%5Chat%7Bj%7D%29)
Because

, the sum of the x and y components should be zero. Therefore,
For the x-component,
0.8854a + 0.75b = 0
or
a + 0.847b = 0 (1)
For the y-component,
0.4648a + 0.6613b - 24.6 = 0
or
a + 1.4228b = 52.926 (2)
Subtract (1) from (2).
0.5758b = 52.926
b = 91.917
a = -0.847b = -77.854
Answer:
The magnitude of vector a is -77.85 m
The magnitude of vector b is 91.92 m
Answer:
160 m
Explanation:
The intensity, I, of the sound is inversely proportional to the square of the distance, r, from the source.

Hence,


From the question,
is half of 



Answer: Their u go i found it their was about 3 pages i did not no what pages u had to do.
Explanation:
The only evidence you have that you exist as a self-aware being is your conscious experience of thinking about your existence. Beyond that you're on your own. You cannot access anyone else's conscious thoughts, so you will never know if they are self-aware.
Answer:
Probability of tunneling is 
Solution:
As per the question:
Velocity of the tennis ball, v = 120 mph = 54 m/s
Mass of the tennis ball, m = 100 g = 0.1 kg
Thickness of the tennis ball, t = 2.0 mm = 
Max velocity of the tennis ball,
= 89 m/s
Now,
The maximum kinetic energy of the tennis ball is given by:

Kinetic energy of the tennis ball, KE' = 
Now, the distance the ball can penetrate to is given by:


Thus



Now,
We can calculate the tunneling probability as:



Taking log on both the sides:

