Wavelength. Each wavelength is a certain color. For instance, shorter wavelengths (like 470nm) will be blue or violet, while longer wavelengths (like 650nm) will be red. Hope this helps! :)
Answer:
if you are asking for density its 48g/cm^3
Explanation:
Convex lenses when placed in the air, will cause rays of light (parallel to the central axis) to converge.
Converging lenses, commonly referred to as convex lenses, have thicker centers and narrower upper and lower margins. The edges are outwardly curled. This lens has the ability to concentrate a beam of parallel light rays coming from the outside onto a spot on the opposite side of the lens.
The image created is referred to be a genuine image when it is inverted relative to the object. On a screen, this kind of image can be recorded. When the object is positioned at a point farther than one focal length from the lens, a converging lens creates a true image.
A virtual image is one that cannot be produced on a screen and is formed when the image is upright in relation to the object. When an item is positioned within one focal length of a converging lens, a virtual image is created. It creates an enlarged image of the object on the same side of the lens as the image. It serves as a magnifier.
Learn more about the convex lens here:
brainly.com/question/12847657
#SPJ4
M1U1 + M2V2 = (M1+M2)V, where M1 is the mass of the moving car, M2 is the mass of the stationary car, U1 is the initial velocity, and V is the common velocity after collision.
therefore;
(1060× 16) + (1830 ×0) = (1060 +1830) V
16960 = 2890 V
V = 5.869 m/s
The velocity of the cars after collision will be 5.689 m/s
In order to solve the problem, it is necessary to apply the concepts related to the conservation of momentum, especially when there is an impact or the throwing of an object.
The equation that defines the linear moment is given by

where,
m=Total mass
Mass of Object
Velocity before throwing
Final Velocity
Velocity of Object
Our values are:

Solving to find the final speed, after throwing the object we have

We have three objects. For each object a launch is made so the final mass (denominator) will begin to be subtracted successively. In addition, during each new launch the initial speed will be given for each object thrown again.
That way during each section the equations should be modified depending on the previous one, let's start:
A) 



B) 



C) 



Therefore the final velocity of astronaut is 3.63m/s