Answer:
a) -41.1 Joule
b) 108.38 Kelvin
Explanation:
Pressure = P = 290 Pa
Initial volume of gas = V₁ = 0.62 m³
Final volume of gas = V₂ = 0.21 m³
Initial temperature of gas = T₁ = 320 K
Heat loss = Q = -160 J
Work done = PΔV
⇒Work done = 290×(0.21-0.62)
⇒Work done = -118.9 J
a) Change in internal energy = Heat - Work
ΔU = -160 -(-118.9)
⇒ΔU = -41.1 J
∴ Change in internal energy is -41.1 J
b) V₁/V₂ = T₁/T₂
⇒T₂ = T₁V₂/V₁
⇒T₂ = 320×0.21/0.62
⇒T₂ = 108.38 K
∴ Final temperature of the gas is 108.38 Kelvin
Answer:
1. False
2. True
3. True
Explanation:
1- False —> The relation between electric potential and electric field is given such that

Therefore, for a uniform E field, electric potential is linearly proportional to the distance.
2- True —> The electric field lines always cross the equipotential lines perpendicularly.
3- True —> In order to be a potential difference, one source of electric field is enough. The electric potential will decrease radially according to the following formula:

There is no test charge in the formula, only the source charge. Even when there is no test charge, the potential difference between points in space can exist.
GIVE vo0Mac0ov Brainliest ... He's smart
Answer:D:soluble
Explanation:
when a compound such as salt dissolves in water it is said to be soluble
MARK AS BRAINLIEST
Answer:
α = 5 rad / s²
Explanation:
This is a rotational kinematics exercise.
They indicate the initial velocity wo = 10 rad / s
w = w₀ + α t
α =
let's calculate
α =
α = 5 rad / s²
The velocity, the angular relation are the same in all the points of the wheel, the velocities and linear accelerations are the ones that change
a = α r
v = w r