Remember,
sin = op/hyp
cos = adj/hyp
tan = op/adj
For question 3 it would be B and C, because the adjacent side of angle x is 12, the hypotenuse is 37, and cos = adj/hyp. Also, the opposite side of angle z is 12, and the hypotenuse is 37, and sin = op/hyp. So both answers would be 12/37. You would do the same with question 4.
For 5, you would do the same thing. It would be D because you can only take the sin of angle 24, and x is a side. the opposite of 24 is x and the hypotenuse is 11, so sin 24 would be x/11. It is the same for problem 6.
Answer:
When there are 108 presents, there are 60 candy canes
Step-by-step explanation:
candy canes : presents = 5:9
5/9 = x/108
cross multiply:
(5) (108) = 9x
540 = 9x, divide both sides by 9
x = 60
Answer:
The value of the constant C is 0.01 .
Step-by-step explanation:
Given:
Suppose X, Y, and Z are random variables with the joint density function,

The value of constant C can be obtained as:



![C\int\limits^\infty_0 {e^{-0.5x}(\int\limits^\infty_0{e^{-0.2y}([\frac{-e^{-0.1z} }{0.1} ]\limits^\infty__0 }) \, dy }) \, dx = 1](https://tex.z-dn.net/?f=C%5Cint%5Climits%5E%5Cinfty_0%20%7Be%5E%7B-0.5x%7D%28%5Cint%5Climits%5E%5Cinfty_0%7Be%5E%7B-0.2y%7D%28%5B%5Cfrac%7B-e%5E%7B-0.1z%7D%20%7D%7B0.1%7D%20%5D%5Climits%5E%5Cinfty__0%20%7D%29%20%5C%2C%20dy%20%20%7D%29%20%5C%2C%20dx%20%3D%201)
![C\int\limits^\infty_0 {e^{-0.5x}(\int\limits^\infty_0 {e^{-0.2y}([\frac{-e^{-0.1(\infty)} }{0.1}+\frac{e^{-0.1(0)} }{0.1} ]) } \, dy }) \, dx = 1](https://tex.z-dn.net/?f=C%5Cint%5Climits%5E%5Cinfty_0%20%7Be%5E%7B-0.5x%7D%28%5Cint%5Climits%5E%5Cinfty_0%20%7Be%5E%7B-0.2y%7D%28%5B%5Cfrac%7B-e%5E%7B-0.1%28%5Cinfty%29%7D%20%7D%7B0.1%7D%2B%5Cfrac%7Be%5E%7B-0.1%280%29%7D%20%7D%7B0.1%7D%20%5D%29%20%20%7D%20%5C%2C%20dy%20%20%7D%29%20%5C%2C%20dx%20%3D%201)
![C\int\limits^\infty_0 {e^{-0.5x}(\int\limits^\infty_0 {e^{-0.2y}[0+\frac{1}{0.1}] } \, dy }) \, dx =1](https://tex.z-dn.net/?f=C%5Cint%5Climits%5E%5Cinfty_0%20%7Be%5E%7B-0.5x%7D%28%5Cint%5Climits%5E%5Cinfty_0%20%7Be%5E%7B-0.2y%7D%5B0%2B%5Cfrac%7B1%7D%7B0.1%7D%5D%20%20%7D%20%5C%2C%20dy%20%20%7D%29%20%5C%2C%20dx%20%3D1)
![10C\int\limits^\infty_0 {e^{-0.5x}([\frac{-e^{-0.2y} }{0.2}]^\infty__0 }) \, dx = 1](https://tex.z-dn.net/?f=10C%5Cint%5Climits%5E%5Cinfty_0%20%7Be%5E%7B-0.5x%7D%28%5B%5Cfrac%7B-e%5E%7B-0.2y%7D%20%7D%7B0.2%7D%5D%5E%5Cinfty__0%20%20%7D%29%20%5C%2C%20dx%20%3D%201)
![10C\int\limits^\infty_0 {e^{-0.5x}([\frac{-e^{-0.2(\infty)} }{0.2}+\frac{e^{-0.2(0)} }{0.2}] } \, dx = 1](https://tex.z-dn.net/?f=10C%5Cint%5Climits%5E%5Cinfty_0%20%7Be%5E%7B-0.5x%7D%28%5B%5Cfrac%7B-e%5E%7B-0.2%28%5Cinfty%29%7D%20%7D%7B0.2%7D%2B%5Cfrac%7Be%5E%7B-0.2%280%29%7D%20%7D%7B0.2%7D%5D%20%20%20%7D%20%5C%2C%20dx%20%3D%201)
![10C\int\limits^\infty_0 {e^{-0.5x}[0+\frac{1}{0.2}] } \, dx = 1](https://tex.z-dn.net/?f=10C%5Cint%5Climits%5E%5Cinfty_0%20%7Be%5E%7B-0.5x%7D%5B0%2B%5Cfrac%7B1%7D%7B0.2%7D%5D%20%20%7D%20%5C%2C%20dx%20%3D%201)
![50C([\frac{-e^{-0.5x} }{0.5}]^\infty__0}) = 1](https://tex.z-dn.net/?f=50C%28%5B%5Cfrac%7B-e%5E%7B-0.5x%7D%20%7D%7B0.5%7D%5D%5E%5Cinfty__0%7D%29%20%3D%201)
![50C[\frac{-e^{-0.5(\infty)} }{0.5} + \frac{-0.5(0)}{0.5}] =1](https://tex.z-dn.net/?f=50C%5B%5Cfrac%7B-e%5E%7B-0.5%28%5Cinfty%29%7D%20%7D%7B0.5%7D%20%2B%20%5Cfrac%7B-0.5%280%29%7D%7B0.5%7D%5D%20%3D1)
![50C[0+\frac{1}{0.5} ] =1](https://tex.z-dn.net/?f=50C%5B0%2B%5Cfrac%7B1%7D%7B0.5%7D%20%5D%20%3D1)
⇒ 
C = 0.01
Answer:
pi4
Step-by-step explanation: Formula is piD, diamter is 4, so pi4 which equals 12.56
5).
and
6).
The volume of a sphere is
(4/3) (pi) (radius)³ .
In #5, the 'pi' is already there next to the answer window.
You just have to come up with the (4/3)(radius³).
Remember that the radius = 1/2 of the diameter.
7). The volume of a cylinder is
(pi) (radius²) (height) .
Divide the juice in the container by the volume of one can,
to get the number of cans he can fill.
8). The volume of a cone is
(1/3) (pi) (radius of the round bottom)² (height) .
He starts with a small cone, he then adds clay to it to make it higher.
The question is: How much clay does he ADD to the short one,
to make the bigger one ?
Use the formula to find the volume of the short one.
Use the formula again to find the volume of the bigger one.
Then SUBTRACT the smaller volume from the bigger volume.
THAT's how much clay he has to ADD.
Notice that the new built-up cone has the same radius
but more height than the first cone.
_______________________________________
Don't worry if you don't understand this.
The answer will be this number:
(1/3) (pi) (radius²) (height of the big one minus height of the small one).