the same with that of products
Explanation:
In a chemical reaction, the total charge of the reactants must be the same with that of products.
Charges must be conserved or balanced in chemical reactions.
- In both acidic and basic/neutral medium electrons are used to balance the charge.
- The appropriate number of electrons is added to the side with a larger charge.
- One electron is used to balance each positive charge.
- This ensures that the sum of charges on both sides the same.
Learn more:
Balanced equation brainly.com/question/5297242
#learnwithBrainly
<h2>QUESTION:- </h2>
➜what is kepler's law??

Kepler gave the three laws or theorems of motion of the orbitals bodies

This law state that the celestial bodies revolves around the stars in elliptical orbit and star as a single focus.
Example :- Earth revolves around the Sun as assuming it as single focus
This also shows that earth revolves around the sun in elliptical orbit.

Area covered by the planet is equal in equal duration of time irrespective of the position of the planet.
It also states that Angular momentum is constant
As Angular momentum is constant it means areal velocity is also constant.

where:-
A is the area.
T is the time.
L is the angular momentum.
M is the mass of the body.

square of the time of the revolution is directly proportional to the cube of the distance between the planet and star in Astronomical unit.

where:-
T = time of revolution
a is the distance between the planet and star.

We don't know that at all. The 3rd law says that the REaction is opposite and EQUAL to the action. We don't know where that "twice as much" comes from.
Answer:
(A). The speed of the ions is 
(B). The radius of curvature of a singly charged lithium ion is 
Explanation:
Given that,
Electric field = 60000 N/C
Magnetic field = 0.0500 T
(A). We need to calculate the velocity
For no deflection





(B). We need to calculate the radius
Using magnetic force balance by centripetal force


Put the value into the formula


Hence, (A). The speed of the ions is 
(B). The radius of curvature of a singly charged lithium ion is 