This isn't a good question but I guess!
You can put a known amount sodium into some sort of time release mechanism such as a pill made from soluble material. Then you can place the sodium into a calorimeter with a known mass of water and record the temperature change the water undergoes during the reaction. Then you can use the equation q(water)=m(water)c(water)ΔT to find the amount of heat absorbed by the water. since the amount of heat absorbed by the water is the amount of heat released from the sodium, q(sodium)=-q(water). Than you can use the equation q(sodium)=m(sodium)c(sodium)ΔT and solve for c(sodium)
I hope this helps and feel free to ask about anything that was unclear in the comments.
The element that will have the lowest electronegativity is an element with a small number of valence electrons and a large atomic radius.
Electronegativity of an element is the ability or power of that element in a molecule to attract electrons to its Valence electrons. The following are the properties of electronegativity:
- It increases across a period from left to right of the periodic table,
- It decreases down the periodic table groups
- Group 1 elements are the least (lowest) electronegative elements. These elements have the lowest valence electrons with a large atomic radius.
- Group 7 elements are the most electronegative elements.
Atomic radius of elements increase down a group because of a progressive increase in the number of shells occupied by electrons which increases the size. But it decreases across a period because electrons are accommodated within the same shell leading to greater attraction by the protons in the nucleus.
Learn more about electronegativity of elements here:
brainly.com/question/20348681
Answer:
2.86mol/L
Explanation:
Given parameters:
Number of moles of MgCl₂ = 7.15moles
Volume of solution = 2.50L
Unknown:
Molarity of the MgCl₂ solution = ?
Solution:
The molarity of a solution is the number of moles of solute found in a given volume.
Molarity =
Insert the parameters and solve;
Molarity =
= 2.86mol/L